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Abstract

In the last decade, bike sharing systems have been launched in many cities. Such

systems contain of stations allowing users to rent and return bikes. Due to spatio-

temporal variation of demands, stations tend to run out or full of bikes. Customer

demands may be not fulfilled. To rebalance the system, a fleet of vehicles transport

bikes between stations during the day. Objective is to maintain suitable fill-levels

for stations. These fill-levels are derived from target intervals provided by tactical

management.

We present an inventory routing problem on operational management level of

bike sharing systems taking into account both time-depended target intervals and

user activities. We define the multi-periodic problem setting as an integer program.

Due to the large number of variables, instances are solved by a decomposition ap-

proach. Optimization is conducted over a rolling horizon. In each period, the set

of stations is divided into partitions. For routing, each vehicle is assigned to one

subset of stations. Appropriate partitions are achieved via variable neighborhood

search by local search algorithms. Partitions are evaluated by a cost-benefit in-

ventory routing algorithm. For computational studies, we use real world data of

Vienna’s bike sharing system ”CityBike Wien”. Our results depict that appropriate

partitions allow efficient routing and repositioning using two vehicles achieving an

overall service level of 91.36%.

Keywords inventory routing, vehicle routing, metaheuristics, variable neighborhood

search, shared mobility, bike sharing
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1 Introduction

Cities deal with a large volume of traffic resulting in traffic jams and environmental pol-

lution, e.g., noise and carbon dioxide emission. One approach to tackle these drawbacks

is the use of public bike sharing systems (BSS, Büttner et al. 2011). In BSS, users ad

hoc rent and return bikes at certain stations. Usually, trips are not charged, if they not

exceed a certain length of time. The revenue generated by the trips cannot compensate

operational costs. Therefore, BSS are subsidized on condition of ensuring a certain ser-

vice level. So, objective is the cost efficient provision of sufficient numbers of bikes and

bike racks at all stations throughout the day. Providers face several challenges main-

taining this service level. Due to the short time rental activities, customer demands

are uncertain. Further, bikes are not returned at the station they have been rented.

Some stations may tend to run out of bikes or congest. Moreover, mobility demand is

subjected to spatio-temporal variation, so the request behavior for every station differs

during the day. To ensure that customers are able to use the service anytime, the BSS

has to be designed and maintained to match this challenges.

This can be achieved on strategical (long-term), tactical (mid-term) and operational

(short-term) management levels (Vogel et al., 2015). The strategic management decides

about location and size of stations. On tactical level, optimal fill-levels for each station

and for (hourly) periods throughout the day are determined by analyzing user activi-

ties. These fill-levels anticipate typical user behavior and serve as input for operational

planning. In our article, we analyze the problem setting on the operational management

level. Here, the actual fill-levels have to be adjusted to the target fill-levels, provided

by the tactical management. Therefore, capacitated vehicles are routed between sta-

tions to reallocate bikes during the day. The provided target fill-levels are real-valued

and, therefore, not suitable on the operation level. Hence, fill-levels are assigned to fill-

intervals. Generally, not every target interval can be achieved due to capacity and time

restrictions. So, routing aims on reducing the number of imbalances over all stations.

These imbalances are represented by the the deviation of actual fill-levels and target in-

tervals. The higher the deviation, the more grows the risk of an unfulfilled demand due

to stochastic customer behavior. Hence, objective is to minimize the squared deviations

over all stations.

In this article, we model this problem as a multi-vehicle multi-periodic inventory

routing problem (IRP). Within each period, decisions consider the served stations, the

amount of transported bikes, and the according vehicle routing have to be made. For

this problem, decisions impact the current and following periods. A small interval

violation in one period might allow skipping the station in the following. Due to the

interval representation of fill-levels, the model allows stations to be source and sink

and even balanced stations to be used to reduce imbalances of adjacent stations. Since

this rich IRP cannot be optimally solved within reasonable time, we apply a temporal
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and spatial decomposition approach. Temporal decomposition is applied using a rolling

horizon to the periods provided by the tactical level. Within each time period, for

routing, a set partitioning problem is solved by optimizing algorithms using variable

neighborhood search (VNS). The partitions are assigned to routes and evaluated by

a routing heuristic. Therefore, a routing approach is developed comparing the costs

and the benefit of serving a station. We test the approach with real-world data from

Vienna’s BSS ”CityBike Wien” operating on 59 stations with two vehicles. The required

target fill-levels are provided by Vogel et al. (2015). We examine the results regarding

the number of vehicles, the neighborhood operators and the interval sizes. For two

vehicles, our approaches achieve an overall service level of 91.36%. The service level

shows significant differences during the day. In the peak hours, the vehicles are not able

to rebalance the high number of trips.

This article is structured as follows: In section 2, we give a literature review of BSS

related literature highlighting the work considering operational decision making. In

section 3, the problem of relocations in BSS is formally defined as an integer program

(IP). The decomposition approach is introduced in section 4. Computational studies

and its results are presented in section 5. Finally, a conclusion is drawn in section 6.

2 Literature Review

Research on BSS has become vast during the last decade. In this section, we first give

a short overview of different research areas concerning BSS. Then, we focus on the

operational level of decision making.

Generally, objective is to install and maintain the functionality of a BSS in a cost

efficient way, first time mentioned by Benchimol et al. (2011). This challenge can be

approached on several management levels. A detailed definition and literature review

of the different management levels can be found by Vogel et al. (2015). On the strategic

level, decision about network design are made. Decisions contain the locations and

sizes of stations and adaptions of the according infrastructure. Lin and Yang (2011)

propose hub models to determine location and size of stations and identify the need

for exclusive bike lanes. Garćıa-Palomares et al. (2012) implement location allocation

models considering station capacity and user demands.

The tactical management addresses service network design. It deals with user activ-

ity patterns and suitable fill-levels for each station and point in time. Activity analysis

has been done by Borgnat et al. (2011) and Vogel and Mattfeld (2011). Additionally,

Vogel and Mattfeld (2011) stated, that stations can be clustered according to similar

rental and return behavior. E. g., stations in residential areas show a different demand

structure compared to stations in working areas. In Vogel et al. (2015), a resource allo-

cation problem (RAP) is presented. Here, decisions about repositionings are made using

a transportation model. So, routing is simplified by single transportation flows. The
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Table 1: Inventory Routing Problems in Bike Sharing Systems
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fleet of vehicles X X X X X X X X
limited time X X X X X X X
multiple visits X X X X X X X
service time X (X) (X) (X) (X) X
open tours X X (X)
target intervals X X
user activities X X X
multi-periodic X X X
min. tour length / time / costs X X X X X X
min. makespan X
min. gaps X X X X X
min. gaps, squared X
min. repositioning operations X X X X
min. unsatisfied user demands X X

RAPs objective is to minimize expected operational costs, i.e., costs regarding realized

tours, repositionings and accepted unserved user demands. Based on mentioned activ-

ity patterns, the RAP is solved by a hybrid metaheuristic. Regarding initial fill-levels,

expected user activities and claimed relocation flows, suitable fill-levels for upcoming

time periods are derived. These fill-levels serve as anticipating input for operational

planning, i.e., if target fill-levels are realized, we suppose to satisfy the next period’s

demands.

The operational management faces vehicle routing problems with inventory deci-

sions. These problems are well known as IRP (Dror et al., 1985). The work on IRPs

regarding BSS differs in objective function and constraints. An overview regarding

characteristics and problem settings is given in Table 1. The very right column gives a

definition of the problem setting presented in this article (see section 3). In general, the

approaches can be differentiated in single and multi-periodic rebalancing.
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2.1 Single Periodic Rebalancing

At first, single periodic problem settings are investigated. In these problems, bikes are

relocated over night, when the system is closed. User activities and time dependent

fill-levels are not considered. Therefore, the target fill-levels represent optimal initial

fill-levels of a day. Usually, closed tours are generated. A closed tour starts and ends

at a given location, e.g., a depot. Chemla et al. (2013) present a problem setting, in

which a single vehicle has to realize target fill-levels. Objective is to minimize the travel

distance. The problem is defined by an exact IP and solved using several relaxions.

Raviv et al. (2013) consider a fleet of vehicles and a limited time horizon. Service

time is variable and depends on the number of repositioned bikes. Because of the

time limit, realization of all target fill-levels may not be possible. The deviation of

realized fill-levels and target fill-levels is called gap. Objective is to minimize the overall

gap and the total travel and service times. Therefore, two models using arc-indexed

and time-index formulation are defined. Similar problem settings are introduced by Di

Gaspero et al. (2013), Rainer-Harbach et al. (2013) and Papazek et al. (2014). The

multi-criteria objectives are minimization of gaps, the total time and the number of

repositioning operations. The authors emphasize the sum of gaps as most important

impact to the objective function. As solution approaches, Di Gaspero et al. (2013)

use constraint programming and ant colony optimization. Rainer-Harbach et al. (2013)

apply a variable neighborhood search algorithm and Papazek et al. (2014) use a hybrid

GRASP approach combining path relinking.

Schuijbroek et al. (2013) defined a single periodical mixed integer program allowing

open tours. An open tour does not necessarily have identical start and end points.

Hence, this approach can be extended for rolling horizon optimization of the multi-

periodical case. Schuijbroek et al. (2013) compute target intervals for each station.

The objective is to realize a specific service level considering target intervals within a

minimal makespan, i.e., minimizing the maximum tour over all vehicles. Optimization

is done via a cluster-first route-second algorithm and constraint programming.

In essence, all single-periodic approaches neglect user activities and time-dependent

target fill-levels. So, for most BSS, single-periodic approaches are not applicable, be-

cause rebalancing is done during the day.

2.2 Multi-Periodic Rebalancing

Contardo et al. (2012) introduce a multi-periodic problem with time-depended pickup

or delivery requests for each station. A pickup request stands for a surplus of bikes,

whereas, a delivery request represents a shortage. If a request is not served or served

partially, user demands are assumed to be unsatisfied at certain station. The objective is

to minimize unsatisfied user demands. For modeling, an arc-flow formulation is applied.

Optimization is carried out with Dantzig-Wolf and Benders decomposition approaches.
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Kloimüllner et al. (2014) defines a multi-periodic problem setting considering time-

depended user activities. Demands are modeled as expected values. A demand may be

unserved, if a station’s fill-level cannot comply the demand, e.g., if the sum of fill-level

and demand would overrun the station’s capacity. The objective includes the minimiza-

tion of unserved user demands. Additionally, tour length, repositioning operations and

gaps regarding target fill-levels at the end of the time horizon are considered. Opti-

mization is done by Greedy Randomized Adaptive Search (GRASP) using VNS.

Many operational approaches include tactical and strategical decisions in the ob-

jective function. A multi-periodical approach only considering operational routing re-

garding the tactical fill-intervals as proposed by Vogel et al. (2015) is not defined yet.

From an operational view, resources are given, i.e., fix costs for workers and vehicles are

already paid. The according costs have to be considered by the operational manage-

ment only as constraints. Further, anticipation of future customer behavior is already

included in the tactical fill-levels. In essence, the operational approach mainly focus on

routing fulfilling the tactical demands by given resources.

3 A Multi-Period Inventory Routing Problem for Bike

Sharing Systems

In the following, we formulate a multi-periodic approach to balance a BSS over a whole

working day with respect to changing target fill-intervals and user activities. Further,

we define the necessary instance variables and model the problem as an integer program.

3.1 Problem Definition

Consider a BSS consisting of stations, bikes, capacitated relocation vehicles and a depot.

Each station has a certain starting fill-level and a maximum capacity. The working

day is divided in periods. Thus, we present a multi-periodic problem setting. For

each period, stations are assigned target fill-intervals. Regarding the working day, all

vehicles start and end their tours at the depot allowing open tours within the periods.

Vehicles start empty at the depot in the first period and have to return empty in the last

period. Stations may be visited multiple times by one vehicle and different vehicles. We

consider a service time per reallocated bike. User activities (derived from the expected

trips) are deterministic and are considered in the system’s fill-levels at the begin of each

period. Here, uncertainty in user activity is already incorporated on tactical level in the

determination of appropriate intervals.

We consider spatio-temporal dependent target intervals given by tactical information

systems, e.g., Vogel et al. (2015). If a station’s fill-level differs from the target interval,

a gap arises. A gap is the deviation between fill-level and target interval. The objective

is to minimize the squared gaps over all stations at the end of all periods. Thus, large
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Table 2: Instance Parameters

symbol description

G = (N,E) bike-sharing system
N = {n0, n1, . . . } set of stations incl. depot n0

N∗ = N \ {n0} set of stations
E = {eij : ni, nj ∈ N} set of edges
V = {v1, v2, . . . } set of vehicles
T = {0, . . . , t} set of decision points, i.e., time horizon
P ⊆ T set of period’s last decision points
c : N → N0 upper station capacity
c : N → Z−

0 lower station capacity
a : N × T → Z upper target interval limit
a : N × T → Z lower target interval limit
d : N × T → Z user activities
w : E → R+ edge weights, i.e., travel times
l : V → N vehicle capacity
ρ service time for repositioning one bike
M sufficient large number

gaps are mostly avoided while small gaps are accepted. Gaps are measured at the end

of each period.

3.2 Instances

An instance is defined by parameters listed in Table 2. The BSS is modeled as a

complete graph with sets of stations and edges. The edges represent shortest paths

between stations. The time horizon consists of discrete decision points. We want to

point out, that station’s capacities and fill-levels are modeled indirectly. I.e., c is the

number of free racks in the beginning of the time horizon. c is the negative fill-level

representing the maximum number of available bikes that can be removed. Thus, a

station’s capacity is equal to c− c.

The target intervals are modeled identically. If a > 0, the current fill-level is below

the upper target interval limit. a indicates how many bikes can be placed without

exceeding the upper target interval limit. If a < 0, the current fill-level is beyond the

upper target interval limit. Then, |a| indicates how many bikes have to be removed

to reach the target interval. a is defines analogously. If a < 0, the current fill-level

is beyond the lower target interval limit. Then, |a| indicates how many bikes can be

removed without deceeding the lower target interval limit. If a > 0, the current fill-level

is below the lower target interval limit. Then, a indicates how many bikes have to be

placed to reach the target interval.

If and only if

a ≥ 0 ∧ 0 ≥ a ⇒ gap = 0, (1)
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Table 3: Decision Variables

symbol description

X =
{
xijwt : xijwt ∈ {0, 1}, eij ∈ E, vw ∈ V, t ∈ T

}
tours

R = {riwt : riwt ∈ Z, ni ∈ N∗, vw ∈ V, t ∈ T} repositionings
A = {ariwt : ariwt ∈ N0, riwt ∈ R} absolute repositionings
G = {git : git ∈ N0, ni ∈ N∗, t ∈ T} gaps

i.e., a station’s fill-level within the target interval leads to a gap equal to zero.

Since we only want to determine gaps at the end of a period, we define functions

a(ni, t)

≤ c(ni, t), if t ∈ P

= c(ni, t), else
(2)

and

a(ni, t)

≥ c(ni, t), if t ∈ P

= c(ni, t), else
(3)

appropriately.

3.3 Integer Program

The decision variables are shown in Table 3. Decision variables are gathered in sets

for tours, repositionings, absolute repositionings and gaps. Tours are determined by

variables

xijwt =

1, if vw starts traveling from ni to nj in t.

0, else.
(4)

Repositionings are denoted by

riwt


> 0, if vw places riwt bikes into ni in t.

< 0, if vw removed |riwt| bikes from ni in t.

= 0, else.

(5)

The absolute number of repositionings are stated by

ariwt = |riwt|. (6)

These variables are necessary to determine service times. Gaps are presented as

git

> 0, if nis fill-level is not within the target interval in t

= 0, else.
(7)
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The integer program reads as follows:

min

|N∗|∑
i=0

t∑
t=0

g2it (8)

subject to
|N∗|∑
j=1

t∑
t=0

xj0wt · t ≥
|N∗|∑
j=1

t∑
t=0

x0jwt · t ∀vw ∈ V (9)

|N∗|∑
j=1

t−w(ej0)∑
t=0

xj0wt = 1 ∀vw ∈ V (10)

|N∗|∑
j=0

t∑
t=0

xijwt =

|N∗|∑
j=0

t∑
t=0

xjiwt ∀ni ∈ N, vw ∈ V (11)

|N∗|∑
j=0

t̂∑
t=0

xjiwt −
|N∗|∑
j=0

t̂∑
t=0

xijwt ≥ 0 ∀ni ∈ N∗, vw ∈ V, t̂ ∈ T (12)

|N∗|∑
j=0

t̂∑
t=0

xjiwt −
|N∗|∑
j=0

t̂∑
t=0

xijwt ≤ 1 ∀ni ∈ N∗, vw ∈ V, t̂ ∈ T (13)

xjiwt̂ ·M +

|N∗|∑
k=0

t̂+arjwt̂·ρ+w(eji)∑
t=t̂

xikwt ≤ M

∀ni, nj ∈ N, vw ∈ V, t̂ ∈
{
0, . . . , t− rjwt̂ · ρ− w(eji)

}
(14)

|N∗|∑
j=0

t∑
t=0

xijwt ·
(
t+ w(eij) + w(ej0)

)
≤ t ∀ni ∈ N, vw ∈ V (15)

|N∗|∑
i=0

|V |∑
w=0

t∑
t=0

xiiwt = 0 (16)

r0wt = 0 ∀vw ∈ V, t ∈ T (17)

|N∗|∑
j=0

xijwt ·M ≥ riwt ∀ni ∈ N, vw ∈ V, t ∈ T (18)

|N∗|∑
j=0

xijwt ·M ≥ -riwt ∀ni ∈ N, vw ∈ V, t ∈ T (19)

|N∗|∑
i=0

t̂∑
t=0

-riwt ≥ 0 ∀vw ∈ V, t̂ ∈ T (20)
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|N∗|∑
i=0

t̂∑
t=0

-riwt ≤ l(vw) ∀vw ∈ V, t̂ ∈ T (21)

|N∗|∑
i=0

t∑
t=0

riwt = 0 ∀vw ∈ V (22)

|V |∑
w=1

t̂∑
t=0

riwt +

t̂∑
t=0

d(ni, t) ≤ c(ni) ∀ni ∈ N∗, t̂ ∈ T (23)

|V |∑
w=1

t̂∑
t=0

riwt +

t̂∑
t=0

d(ni, t) ≥ c(ni)∀ni ∈ N∗, t̂ ∈ T (24)

ariwt ≥ riwt ∀ni ∈ N, vw ∈ V, t ∈ T (25)

ariwt ≥ -riwt ∀ni ∈ N, vw ∈ V, t ∈ T (26)( |V |∑
w=1

t̂∑
t=0

riwt +

t̂−1∑
t=0

d(ni, t)

)
− a(ni, t) ≤ git ∀ni ∈ N, t̂ ∈ T (27)

a(ni, t)−

( |V |∑
w=1

t̂∑
t=0

riwt +

t̂−1∑
t=0

d(ni, t)

)
≤ git ∀ni ∈ N, t̂ ∈ T (28)

The objective function (8) minimizes the sum of squared gaps over all stations and

periods. Each vehicle leaves the depot before it returns (9) within the time horizon

(10). Each node is visited and left by a single vehicle the same number of times (11).

Visits and returns have to be done alternatingly (12, 13). If a vehicle leaves a station, it

cannot leave the destination before it has arrived there (14). A station can be visited,

if returning to the depot is possible in time (15). To avoid short cycles, a vehicle

cannot visit a station where it currently stays (16). At the depot, no repositionings

can be done (17). Repositionings are possible, if the vehicle stays at related station

(18, 19). One vehicle’s cumulated repositionings have to match the vehicle’s capacity

at all time (20, 21). In sum, each vehicle’s repositioning operations have to be balanced

(22). Repositionings and user activities must not violate the station’s capacities (23,

24). Absolute repositionings are determined as the repositionings absolute value (25,

26). Finally, the gaps are calculated (27, 28).

4 A Decomposition Approach with Variable Neighborhood

Search

Due to the large number of integer decision variables, problem instances cannot be

solved exactly within reasonable time. Thus, we propose a decomposition approach as

shown in Figure 1. The decomposition is applied in temporal and spatial dimension.

Temporal, we use a rolling horizon. Spatial, we combine a set partitioning with a
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(variable) neighborhood search. To solve the routing problem, we define a cost-benefit

heuristic.

4.1 Decomposition

Anticipation of future customer demands is included in the design of the target interval.

Hence, even though we use a temporal decomposition, the achieved solutions are antic-

ipatory. The temporal decomposition is realized by optimization over a rolling horizon

(Baker, 1977). Thus, the periods as described in section 3 are optimized sequentially.

I.e., we start the first period with its target fill-intervals. Afterwards, user activities

of the associated period are added. Then, the optimization is done regarding the next

period’s target fill-intervals realizing fill-levels. The procedure continuous until the last

period is finished.

We use spatial decomposition to reduce the number of routing decisions. The set of

stations N∗ is partitioned into subsets. The stations in each subset are assigned to a

vehicle. Efficient subsets consider both short distances between stations and a balance

in bike surplusses and shortages. A generalization of this problem is given by Balas and

Padberg (1976). A set partitioning problems solution consists subsets N∗
i that satisfy

both

N∗
1 ∪N∗

2 ∪ · · · ∪N∗
|V | = N∗ (29)

and

N∗
i ∩N∗

j = ∅ ∀N∗
i , N

∗
j ⊆ N∗, i ̸= j. (30)

4.2 Variable Neighborhood Search

The set partitioning problem is tackled by different local search algorithms iteratively.

For that, we define two operators for altering partitions, respectively solution.

• INSERT changes one station’s assignment. I.e., one station is removed from its

subset and is assigned to another.

• EXCHANGE refers to two stations of different seubsets. The first station is as-

signed to the second station’s subsets and vice versa.

The procedure described is depicted in Figure 1. The application of an operator spans

one solutions neighborhood. In each iteration, the current solutions neighborhood is

evaluated by a routing algorithm (section 4.3). According to the search algorithm,

a new solution from the neighborhood is selected for the next iteration until a stop

criterion is reached. To combine Insertion and Exchange, a variable neighborhood is

examined. I.e., first the small neighborhood (Insert) is examined. When a stop criterion

is reached, the neighborhood is enlarged (Exchange).

Three local search algorithms are applied. Hill Climbing always chooses the best

solution from a neighborhood until a local optimum is found (Mattfeld, 1996). Tabu
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Temporal	Decomposition:	Rolling	Horizon

Spatial	Decomposition:	Set	Partitioning	+	VNS

Neighborhood

Partition

Span	(Operators)

Select

Evaluate	

(Routing)

Figure 1: Temporal and Spatial Decomposition Approach with Variable Neighborhood
Search

Search prohibits a set of solutions on a tabu list to overcome local optimality. Here, the

tabu list contains the last solutions (Rothlauf, 2011). Simulated Annealing randomly

chooses a solution from the neighborhood. Depending on the objective value and a cool

down parameter, the solution choosen is accepted (Aarts and Korst, 1989).

4.3 Cost-Benefit Routing

For evaluation of the partition’s subsets, we define an inventory routing algorithm com-

paring costs and benefit of visiting a station. The goal is to generate a tour regarding

repositioning operations for each subset. Routes are generated here by an adapted near-

est neighbor. Usually, according to Schneider and Kirkpatrick (2006), the next vehicle’s

destination is the nearest station that has not been visited yet. In our approach, we

also take possible repositionings into account. Depending on the number of bikes loaded

and the vehicle’s capacity, we consider the possible gap reduction of a station. We call

the squared gaps maximum reduction △g2. The time for conducting such reduction

depends on the travel time w, the absolute number of repositionings ar, and on the

service time ρ as well. Now, a

score =
△g2

w + ar · ρ
(31)
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Figure 2: Number of Trips per Period for a Typical Working Day

is calculated for each station within the given subset. I.e., we balance costs and benefit.

The station with highest score is the vehicle’s next destination. Destinations and repo-

sitioning operations are iteratively generated, as long as the time limit of the period

is not exceeded. The sum of resulting squared gaps over all stations is the partition’s

objective value. Hence, the sum over all partitions and periods is the overall objective

value.

5 Computational Studies

In this section, we define the test instances based on the case study on ”CityBike Wien”

and tune the applied algorithm. Then, we analyze the results regarding solution quality

and show the algorithms impact to routing and fill-levels. Finally, we compare the

results with the transportation problem provided by Vogel et al. (2015).

5.1 Instances

For computational studies, we use real world data from Vienna’s BSS ”CityBike Wien”

(GewistaWerbegesellschaft m.b.H. (2014)). The data set contains approximately 750,000

single trips observed in the years 2008 and 2009. The BSS consists of 59 stations and

627 bikes. The travel time between a pair of stations depends on the Euclidean distance

and on the vehicle’s speed. We assume to have a constant speed of 25km
h . The service

time required for the reposition of a bike is 2min. We examine the results for 2, 3, 4,

and 8 homogeneous vehicles with capacity of 20 bikes. Station capacities differ between

10 and 40. A detailed analysis of the spatial-temporal customer behavior can be found

in Vogel and Mattfeld (2011). Typical flows of bikes for a work day have been extracted

by Vogel et al. (2015). These flows contain 1,569 single trips per day. The amount of

trips over the day is shown in Figure 2.
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User activities start at 8 a.m. and increase up to an overall peak at 6 p.m. A

majority of customers use the BSS regularly to commute between home and work. In

the morning, stations in the city center congest, while stations in residential areas run

out of bikes.

For the typical flows, optimal fill-levels for station and hour of the day have been

generated. The preprocessed data serves as input for our computational studies. The

according intervals have a size of 5 bikes. For two stations, Figure 3 depicts exemplarily

the development of target intervals during the day. The graphs also contain fill-level

realizations provided by the solution approach. The target intervals change hourly. The

graph on the left side shows intervals for a station in a residential area. As assumed,

residential stations require a lot of bikes in the beginning of the day for users commuting

to work. In the evening, target intervals are low to allow commuters to return their

bikes. In the graph on the right, intervals for a working station in the city center can

be seen. Target intervals show a opposing evolution over the day compared to the

residential station.

5.2 Algorithm Tuning

To apply VNS, an initial partition is randomly generated. Except Hill Climbing, the

different local search algorithms requires parameter settings. In Tabu Search, the length

of the tabu list is set to 100. Iterations are performed until the algorithm reaches a

setting for the second time. I.e., the same solution is found twice regarding an identical

tabu list. In Simulated Annealing, parameters are chosen according to Rothlauf (2011).

The cool down parameter differs between 0.99 and 0.999 and the initial temperature is

initialized as the objective values standard deviation on a sample of randomly generated

solutions. Since the objectives differs with a different number of vehicles, the initial

temperature τ differs between 64.0 and 256.0. The procedure stops when the probability

equal to e
-1
τ of accepting an inferior solutions falls below 0.01. The according minimal

temperature is 0.2.

5.3 Test Results

First, we depict the advantages of a variable neighborhood search. Second, we compare

the different neighborhood approaches regarding solution quality. For Simulated An-

nealing, we exemplary analyze the solutions structure in detail considering routing and

fill levels for different stations types during the day.

To examine the solution quality of the different operator settings, we run 100 tests

for the single operators and the operator combination considering different numbers of

vehicles. Solution quality and variance for Hill Climbing are shown in Table 4. VNS,

i. e., the combination of the two operators, outperforms the single operators by far

for every instance. Further, VNS reduces the objective value significantly up to 20.5%

14
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Figure 3: Target Intervals and Realized Fill Levels for a Residential Station

Table 4: operator comparison: average squared gaps / sample variance

operators \ vehicles 2 3 4 8

Insert 174.66/764.33 129.24/238.63 126.04/327.33 116.10/315.91
Exchange 165.19/355.97 123.20/133.48 122.50/240.11 134.36/463.99
Insert/Exchange 155.68/274.56 116.70/115.80 112.90/142.46 106.77/154.50
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Table 5: algorithm comparison: average / sample variance

algorithm \ vehicles 2 3 4 8

Squared Gaps

Hill Climbing 155.88/325.28 116.02/134.16 113.76/210.53 108.63/148.34
Tabu Search 139.28/108.20 105.07/ 83.54 104.19/101.69 103.19/111.15
Simulated Annealing 135.63/125.23 104.81/ 73.49 100.77/100.32 91.87/ 88.62

Runtime (in seconds)

Hill Climbing 3.28 2.90 2.81 3.20
Tabu Search 131.53 81.78 51.52 171.46
Simulated Annealing 245.09 45.16 37.67 14.03

Service Level (in %)

Hill Climbing 90.07 92.61 92.75 93.08
Tabu Search 91.12 93.30 93.36 93.42
Simulated Annealing 91.36 93.32 93.58 94.14

Gaps

Hill Climbing 91.16/24.50 75.94/25.55 71.34/34.07 67.37/43.12
Tabu Search 86.48/ 9.59 74.51/23.26 71.57/40.45 69.63/36.80
Simulated Annealing 86.11/13.23 75.01/23.34 69.03/44.37 63.15/34.61

compared to the single approaches. The variance is reduced up to 66.7%. So, in the

following, we use VNS to compare the different search algorithms.

The results for the different local search algorithms combined with VNS and the

according runtimes shown in Table 5 (Experiments are performed on a Intel Core i5-

3470 @ 3.2GHz with 32GB RAM).

Simulated Annealing outperforms the two other approaches followed by Tabu Search.

As expected, Hill Climbing is not able to reach similar results as the metaheuristics.

The average increase in objective value compared to Simulated Annealing is 14.1%, in

variance even 111.1%. The high variance indicates that for Hill Climbing the qual-

ity of the initial partition is essential for finding good solutions. Simulated Annealing

provides high quality solutions regardless the design of the initial partition. The more

vehicles, i.e., the higher the number of subsets in a partition, the more advantageous is

the application of Simulated Annealing. Especially for 8 vehicles, the stations in each

subset of the initial partition may be spatially divided and the sum of bike shortages

and surpluses may be highly imbalanced. Here, Simulated Annealing outperforms both

approaches by more than 12.3%. The runtimes for Simulated Annealing decreases sig-

nificantly regarding the number of vehicles while, as comparison, Hill Climbing requires

nearly a contant amount of time regardless the number of vehicles. Hence, especially

for a high number of subsets, Simulated Annealing achieves fast high quality solution.

Because the algorithms are applied to typical flows, the trips are deterministic and

smoothed (Vogel et al., 2015). Hence, a direct calculation of the number of unfulfilled
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Figure 4: Gap Sizes of Imbalanced Stations for 2 Vehicles

demands and, therefore, the service level is not possible. We have to estimate the

number of unfulfilled demands. We assume to satisfy all demands, if a station’s fill-level

is within the associated target interval. If an interval is not reached, the possibility of an

unfulfilled demand increases significantly with the respective gap. Hence, we estimate

the service level as the relation between the sum of squared gaps
∑

g2 compared to the

overall number of trips
∑

d.

servicelevel = 1−
∑

g2∑
d

(32)

The results can be seen in Table 5. The overall service levels differ from 90.07% up

to 94.14% regarding solution approach and number of vehicles. So, in general, more

than 9 out of 10 demands can be fulfilled. Adding another vehicle to the two existing

increases the service level about 2.15%, whereas the addition of a fourth vehicle only

leads to a slight increase of 0.27%. For this small instance, more than three vehicles

may not be necessary to maintain the system.

To examine the solution structure in more detail, we additionally analyze the average

gaps and associated sample variances displayed in Table 5. Here, the gaps differ less

in relation to the objective values. For some instances, Hill Climbing even achieves

lower gaps than Tabu Search. Figure 4 shows the distribution of gaps for the different

algorithms and two vehicles. As we can we see, the number of imbalanced stations for

Hill Climbing is lower than for the other approaches whereas the gap sizes are larger.

While Tabu Search and Simulated Annealing allows slight imbalances in many stations,

Hill Climbing is not able to avoid a significant amount of stations with higher gaps

resulting in relatively poor solution quality.

To further analyze the solution structure, in the following, we exemplary show the

results for Simulated Annealing and two vehicles. First, we analyze the solution results

during the day. Figure 5 depicts the number of imbalanced stations, the gaps in bikes

17
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Figure 5: Number of Imbalanced Stations, Bike/Rack Gaps and Objective Function
over the Periods for Simulated Annealing, 2 Vehicles

and racks, and the objective function over the periods. The structure matches the

customer behavior shown in Figure 2. Between periods 0 and 7 only a small number of

trips occur and no interval violation is discovered. The first violations can be experienced

in period 8, when the morning peak occurs. During the day, the violations increase until

the main peak between period 16 and 18. Here, in average, 10 stations are imbalanced.

These imbalances are subsequently reduced during the rest of the day.

In Figure 3, the fill levels per period for a residential and a working station are

shown. There is no repositioning before period 17. Then, a vehicle picks up 11 bikes

from the residential station seen on the left and delivers 10 to the working station seen

on the right. The 11th bike is unloaded on a station in between. So, while the target

interval for the residential station can be reached, for the working station, the missing

bike is not unloaded until period 20.

As expected, two vehicles are not able to maintain the service level in this time

periods, the service level drops to 79.3%. Even with eight vehicles, the service level

in period 17 remains low with only 81.8%. Here, the provided target fill intervals

might be impracticable. The transportation problem applied by Vogel et al. (2015) to

estimate the repositioning tours has no capacity contraints per period. The resulting

flows are compared to the realized repositionings in Figure 6. The correlation between

flows and repositionings is significant. But, while there is no transportation flow later

than period 17, repositionings have to be carried out until the last period. Here, the

number even increases, due to the constraint that the vehicles have to return to the

depot empty. This indicates that the matching between transportation problem and

routing might be weak within peak periods and temporal capacity constraints applied

to the transportation problem could improve the matching and the solution quality

significantly.
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Figure 6: Repositionings per Period: Comparison of Transportation Problem by Vogel
et al. (2015) and Routing Approach

6 Conclusion

We have introduced a multi-periodic problem setting for rebalancing bike sharing sys-

tems. Time-dependent target intervals anticipating future demands for stations are

provided by tactical information systems. These target intervals have to be realized

by a fleet of capacitated transportation vehicles. Thus, inventory and routing decision

have to be made. We defined the problem using an integer program. To solve problem

instances, a decomposition approach is presented. The decomposition is implemented

both temporal and spatial. I.e., a given time horizon is divided into periods. Optimiza-

tion is performed over a rolling horizon. Subsequently, the set of stations is divided into

partitions. In each partition, a vehicle realizes reposition operations. The set partition-

ing problem is tackled via (variable) neighborhood search by metaheuristics, i.e., Tabu

Search and Simulated Annealing. Therefore, initial partition are generated randomly

and improved iteratively. To evaluate partitions, an myopic inventory routing algorithm

comparing costs and benefits of visiting a station is introduced.

We present a computational case study based on real world data of Vienna’s bike

sharing system ”CityBike Wien”. Results show that the selection of partitions has a

huge impact on inventory routing. For this problem, variable neighborhood search is

advantageous. Compared to a greedy procedure, the applied metaheuristics lead to

significant better solutions regarding solution quality. Using randomly created initial

partitions, the metaheuristics are reliable allowing good solutions and a low sample

variance. Increasing the number of vehicles, Tabu Search cannot achieve better results.

In that case, Simulated Annealing leads to significant better results. Thus, we assume

Simulated Annealing to be suitable for large instances. Investigations on realized fill-

level and target intervals reveal that significant deviations occur mainly during peak

hours. The consideration of routing on tactical level using a uncapacitated transporta-
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tion problem may be impracticable. Including temporal and spatial capacity constraints

may lead here to more suitable fill levels.

In future work, the approach might be validated for larger BSS and extended. E.

g., optimization regarding target intervals of the following periods could lead to explicit

anticipatory inventory routing. Additionally, simulation of stochastic customer requests

may allow insights over the reliability of fill levels and routing approach. Generally, fur-

ther research should concentrate on a close connection between operational and tactical

management. E. g., initial partitions could be created in advanced on tactical level to

support operational optimization.
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