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Abstract 

Bike sharing has recently enabled sustainable means of shared mobility through auto-

mated rental stations in metropolitan areas. Spatio-temporal variation of bike rentals 

leads to imbalances in the distribution of bikes causing full or empty stations in the 

course of a day. Ensuring the reliable provision of bikes and bike racks is crucial for 

the viability of these systems. This paper presents an integrated approach of mathe-

matical optimization and intelligent data analysis to support service network design in 

bike sharing systems. Introducing the notion of service network design to bike sharing 

systems, we aim to show the usefulness of tactical planning for shared mobility sys-

tems. 

Designing a service network requires the suitable aggregation of operational data as 

well as the anticipation of operational decisions. We present a mixed-integer program-

ming formulation aiming at cost-efficient fill levels bikes at stations given a predefined 

service level for different scenarios of bike demand. Operational relocation decisions 

are anticipated by a dynamic transportation model yielding relocation services. Differ-

ent scenarios of bike demand are considered as realizations of typical bike flows be-

tween stations in terms of time-dependent origin / destination matrices. We employ an 

intelligent data analysis approach to generate typical bike flows from individual trips 

recorded automatically in bike sharing systems. Intelligent data analysis produces spa-

tio-temporal distributions of bike flows and helps determining typical trip purposes in 

combination with methods from the field of urban transportation planning. 

The proposed methodology is exemplified based on two years of operational data from 

Vienna’s “Citybike Wien”. Computational experiments show how fill levels vary accord-

ing to different scenarios of bike demand. Furthermore, spatio-temporal characteristics 

of relocation services are provided, which can support operators of bike sharing sys-

tems in the planning and implementation of relocation services. 

Keywords: Service network design, Mixed-integer programming, Intelligent data anal-

ysis, Urban Transportation Planning, Shared mobility, Bike sharing  
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1 Bike Sharing Systems 

Emerging metropolitan areas need efficient and sustainable mobility services in order to en-

sure their attractiveness, quality of life, and economic power. The more crowded a metropoli-

tan area becomes, the more inefficient and expensive is the realization of trips with private 

vehicles. Municipalities have thus begun to implement innovative shared mobility systems 

such as car and bike sharing systems in order to accommodate the mobility needs of their 

citizens while ensuring sustainability and flexibility of transportation. Bike sharing systems 

(BSS) have become exceptionally popular. The number of implemented BSS is impressive; 

in Europe, about 400 BSS have been introduced in the last ten years (Büttner and Petersen 

2011). Markets in America and Asia are catching up (Shaheen et al. 2010).  

BSS provide an individual, but likewise public means of transportation for inner city trips (Mi-

dgley 2011). They are characterized by a high density of service facilities in heavily popu-

lated areas, e.g., with an average distance of 300 meters between bike stations (Büttner and 

Petersen 2011). Municipalities typically engage advertising companies for the operation of 

BSS (DeMaio 2009). Short bike rentals are often free of charge, and revenue is indirectly 

generated from a license to advertise on street furniture. Rental, return and maintenance pro-

cesses are automated, enabling fast and easy access as well as one-way use and short 

rental times through unattended stations. Every trip is recorded for tracking and billing pur-

poses.  

While the usage of BSS is often simple, inexpensive and convenient from a user’s point of 

view, the efficient and reliable design, management and operation of BSS are challenging. 

Demand for bike rentals varies strongly, following typical mobility patterns in the course of 

day and week caused by e.g. commuter, leisure or tourist trips. Furthermore, one-way rentals 

intensify imbalances in the distribution of bikes. Imbalances in the distribution of bikes affect 

the service level, i.e., the successful provision of bikes and free bike racks when demanded. 

Due to limited capacity at stations, rentals are impossible at empty stations, and returns are 

impossible at full stations. BSS operators aim to ensure a service level which is self-stipu-

lated or stipulated by municipalities. For instance, a tendering for the Arlington BSS requests 

that “stations shall not be full of bicycles for more than 60 minutes during the hours of 8am - 

6pm and 180 minutes during the hours of 6pm - 8am” (Zahory 2009). 

Bike imbalances can be handled by means of strategic, tactical or operational planning. On 

the strategic level, decisions on the number, location and size of stations have to be made. 

Acquiring a high number of bike racks at stations increases the probability of successful re-

turns. On the tactical level, bike fill levels at stations need to be determined that compensate 

varying bike demand in the course of day. High fill levels increase the probability of success-

ful rentals, for example, while decreasing the probability of successful returns at particular 
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stations. On the operational level, relocation of bikes from rather full to rather empty stations 

helps maintaining the service level. Manual relocation with the help of a service fleet results 

in significant costs affecting the viability of BSS (DeMaio 2009), though. Planning levels are 

interdependent: reasonable sizing of stations and fill levels of bikes may reduce relocation 

efforts, whereas high relocation efforts may compensate insufficient sizing and fill levels. 

Hence, distinct optimization of the planning levels may lead to suboptimal decisions. 

In this paper, we propose an integrated approach of intelligent data analysis and mathemati-

cal optimization supporting tactical service network design (SND) in BSS. The presented 

mathematical mixed-integer program (MIP) determines optimal target fill levels at stations by 

minimizing the expected costs of relocation. The MIP ensures a given service level for differ-

ent scenarios of bike demand for a mid-term planning horizon. Scenarios are defined through 

bike flows that are modeled by time-dependent origin / destination (OD) matrices. The re-

quired information is derived from the aggregation of recorded customer trips in combination 

with well-known urban transportation planning approaches. We present an information model 

that abstracts from observed trip data by means of intelligent data analysis. The information 

model provides trip purposes, which allow for the generation of different scenarios of bike de-

mand. These scenarios serve as input for SND. 

The remainder is organized as follows. A literature overview on the analysis of shared mobil-

ity systems and related optimization approaches is presented in Section 2. We discuss our 

integrated approach comprising the information model representing trip purposes, its integra-

tion into an urban transportation planning approach and generation of demand scenarios in 

Section 3. This section also presents an optimization model for SND. The proposed method-

ology is exemplified with the help of a case study including two years of trip data from Vi-

enna’s BSS “Citybike Wien” (Section 4). Future work is the subject of Section 5. 

 

2 Design, Management and Operation of Shared Mobility Systems  

Design, management and operation of shared mobility systems can be supported by data 

analysis and optimization approaches for strategic, tactical and operational planning tasks. 

We propose the classification of planning tasks and corresponding data flows as shown in 

Fig. 1. The classification provides background information on the planning tasks and helps to 

clarify our perspective on the tactical planning level. Decisions on a specific planning level 

may have a significant impact on the decisions of the subordinate level. Note that this classi-

fication is also applicable to other shared mobility systems. 
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Fig. 1 Classification of planning tasks for shared mobility systems 

Following the flow of operational data, the planning levels are described from bottom to top: 

 Within system operation, data about rental and return times at stations is continuously 

recorded for tracking and billing purposes. An exemplary trip data record comprises 

the particular rental station, the time of rental, the return station and the time of return.  

 On the operational level, system operators need to handle short-term variation of de-

mand by relocating bikes. Maintaining the defined service level for a specific setup of 

the system requires detailed routing of the service fleet. Typical decisions regard 

where and when to pick up and return how many bikes using which service vehicle. 

Due to the short-term planning horizon, routing of service vehicles relies on detailed 

information about current and expected bike demand, fill levels at stations, available 

service vehicles and staff. Based on historical trip data, short-term forecasts of trips 

may serve as input for the optimization of relocation operations. Forecasts have to in-

corporate short-term influences such as weather, events and traffic conditions. 

 Tactical planning intertwines strategic and operational planning by shaping the ser-

vice network. Tactical planning aims at rational and efficient management of a shared 

mobility system through allocation of system resources among a service network to 

improve the system’s performance over medium-term horizons. From an optimization 

perspective, SND targets a certain service level in order to prepare efficient and relia-

ble operation and relocation. Thus, decisions on SND need to take a wide-range of 

demand variation into account. For BSS, fill levels at stations are to be determined as 

input for operational planning. To optimize the SND for a given service level, tactical 

planning requires the suitable aggregation of operational data and the anticipation of 

operational decisions. Our tactical planning approach is detailed in Section 3. 
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 On the strategic level, typical decisions regard the number, location and (re-)size of 

stations ensuring sufficient overall coverage and capacity of the implemented system. 

The analysis of historical trip data as well as external data such as demographic and 

land-use data may lead to insights on user behavior. Strategic planning also allows 

for the determination of overall demand for network design purposes.  

In the following, a literature overview of the above planning tasks is provided, especially with 

regard to different planning and optimization tasks for BSS. We also discuss the role of oper-

ational data and its required level of aggregation for the particular planning tasks. First, re-

cent work on the well-studied and established operational and strategic planning levels are 

presented. Second, studies on the rather unacquainted and unappreciated tactical planning 

level are described. 

2.1  Operational and Strategic Planning 

For operational planning, a system operator needs to forecast trips on a very detailed, short-

term level, supporting planning of relocation tours. Statistical analysis of observed trip data 

may provide the required data input. Vogel and Mattfeld (2011) model and forecast bike rent-

als on an hourly basis while considering seasonal influences by detailed weather data. Borg-

nat et al. (2010) incorporate weather data and event data (holidays, strikes) for short-term 

forecasts of bike rentals. Kaltenbrunner et al. (2010) and Froehlich et al. (2009) analyze fill 

levels in order to forecast the availability of bikes at stations. 

Many authors relate the optimization of relocation tours to the one-commodity-pickup-and-

delivery problem (PDP) and the swapping problem (SP). In the PDP, a fleet of vehicles trans-

ports a commodity from pickup to delivery stations. In the SP, multiple commodities are con-

sidered and a station serves both as a pickup and as a delivery station. Planning of reloca-

tion services is studied as a static or dynamic problem. For the static problem, relocations 

are realized at night time when no demand occurs. Benchimol et al. (2011) combine PDP 

and SP and present a static model and solution methods. Raviv et al. (2013) study the static 

relocation problem minimizing user dissatisfaction by means of penalty costs and operating 

costs for relocation. Ricker et al. (2012) introduce a simulation-based approach to determine 

the cost-efficient daily number of relocation operations. Weighted sums of transportation 

costs and costs for unserved customers are considered. Rainer-Harbach et al. (2013) pro-

pose a variable neighborhood search in combination with a greedy heuristic, maximum flow 

approach and linear program (LP) to determine the routes and number of relocated bikes for 

the static relocation problem. Raidl et al. (2013) improve the variable neighborhood search of 

the former work by efficiently determining optimal loading operations. Also addressing the 

static case, Di Gaspero et al. (2013a) present a hybrid metaheuristic combining constraint-

based programming and ant colony optimization. The objective is to minimize the travel time 
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for relocation tours and the difference between actual and target fill levels at stations. Di Gas-

pero et al. (2013b) extend the constraint-based programming approach and incorporate large 

neighborhood search to speed up to the branching strategy inherent in the constraint pro-

gramming. Ho and Szeto (2014) study the static relocation problem and propose an iterated 

tabu search. 

For the dynamic problem, demand variation and several decision points over time are con-

sidered. Contardo et al. (2012) present an arc-flow optimization model for the dynamic rout-

ing of service vehicles minimizing “lost demand”. Lost demand is caused by customers who 

cannot rent or return bikes at empty or full stations, respectively. Caggiani and Ottomanelli 

(2012) propose a decision support system for the dynamic relocation problem. Here, a neural 

network is used to forecast rentals and returns at stations. Dell’Amico et al. (2013) develop 

MIP formulations for the dynamic relocation problem based on the one-commodity pickup 

and delivery capacitated vehicle routing problem. Since the formulations lead to an exponen-

tial number of constraints, a branch-and-cut algorithm is introduced. Kloimüllner et al. (2014) 

extend the previous work of Rainer-Harbach et al. (2013) and Raidl et al. (2013) to the dy-

namic case. They use a greedy construction heuristics and present two metaheuristic ap-

proaches, namely greedy randomized adaptive search and variable neighborhood search. 

Kaspi et al. (2014) simulate different parking reservation policies in shared mobility systems 

based on a Markov chain model. Upon rental, users specify their destination and parking 

spaces are reserved according to different policies. The simulation shows that reservation 

policies reduce the travel time of users. Fricker and Gast (2014) apply a Markov model to 

simulate user trips in BSS. They show that simple incentives, e.g. suggesting users to return 

the bike at the station with the lowest fill level among two stations, can improve the perfor-

mance of the BSS. 

For car sharing systems, Kek et al. (2009) present a MIP minimizing costs for service staff 

and relocation operations. Lost demand is considered in terms of penalty costs. Nair and Mil-

ler-Hooks (2011) propose a stochastic MIP with chance constraints to obtain a least-cost 

plan for the relocation of vehicles. Their cost function comprises fixed costs for the relocation 

of vehicles, relocation between stations, and penalty costs for the utilization of additional ser-

vice vehicles. Di Febbraro et al. (2012) apply simulation for user-based relocation. Discounts 

are given if users return rental cars at locations proposed by an assignment model matching 

cars and rental demand. Weikl and Bogenberger (2012) present a conceptual framework for 

relocation in free-floating car sharing systems. In their two-step approach, they first identify 

clusters having similar demand patterns and second apply relocation strategies based on the 

clusters. Nourinejad and Roorda (2014) maximize the total profit of a one-way car sharing 

systems considering revenue for trips and costs for relocation. Their proposed decision sup-

port system comprises discrete event simulation and the optimization of relocations. 
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For strategic planning, information on typical system behavior is required. Based on data 

analysis of a large data set of customer trips, Vogel et al. (2011) determine temporal demand 

“activity clusters” describing typical rental and return activities at stations in the course of the 

day. Cluster analysis reveals groups of stations with similar trip purposes represented by the 

activity. Borgnat et al. (2010) characterize interrelated stations by cluster analysis of bike 

flows between stations. Wang et al. (2012) apply linear regression to model the correlation of 

bike activity at stations and external factors like demography and transportation infrastruc-

ture. Faghih-Imani et al. (2014) model the influence of weather, bike infrastructure, land-use 

and environmental attributes on bike rental and return rates. O’Brien et al. (2013) present 

various key figures on the configuration of BSS as well as their spatial and temporal charac-

teristics. 

Consideration of spatial relations between bike rentals at stations and location of stations 

may support strategic decisions on the number, location and size of stations. Lin and Yang 

(2011) present a hub-location model that determines the number and locations of bike sta-

tions as well as the network of bike paths. Here, customers’ travel costs and setup costs for 

bike stations and bike paths are minimized. In an extended version of their optimization 

model, also decisions on the bike inventory at stations are taken into account (Lin et al. 

2013). Martinez et al. (2012) propose a MIP to optimize the location of bike sharing stations 

and the size of the bike fleet. Garcia-Palomares et al. (2012) introduce a location-allocation 

modeling approach to optimize the location of bike sharing stations based on coverage. Nair 

and Miller-Hooks (2014) present a MIP for the optimal configuration of shared mobility sys-

tems by determining the station locations and sizes as well as vehicle inventories, but ne-

glect operational decisions. Chow and Sayarshad (2014) propose an approach for the inte-

grated network design of BSS and traditional public transportation systems. 

2.2  Tactical Planning  

Compared to work on strategic and operational planning of shared mobility systems, litera-

ture on tactical planning is scarce. Existing studies handle tactical planning with and without 

anticipation of operational decisions. The following studies do not anticipate operational deci-

sions: 

 George and Xia (2011) model shared mobility systems by means of a closed queuing 

network. A profit maximizing optimization is applied in order to determine the optimal 

fleet size and allocation of rental vehicles.  

 Cepolina and Farina (2012) determine the fleet size and vehicle allocation for a car 

sharing system with small electric vehicles. Costs for user waiting times and system 

operation (vehicle purchasing and running costs) are minimized by means of Simulated 
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Annealing. Dynamic user-based relocation is assumed to be coming at no additional 

cost. Thus, relocation costs are not taken into account. 

 Raviv and Kolka (2013) also use queuing models. With the help of a user dissatisfac-

tion function, the optimal fill level at a bike station is determined.  

 Schuijbroek et al. (2013) minimize the costs of relocation tours and incorporate ser-

vice level requirements at stations. They consider the static case in which no varying 

user demand is considered. The service level is precalculated for each station without 

anticipation of the routing decisions. A cluster-first route-second heuristic is proposed 

to solve the problem. 

 Shu et al. (2013) use a network flow model to determine the initial allocation of bikes 

at stations in order to maximize bike flows and successful trips within the network on 

weekly basis. In a separate optimization model, they assess the impact of relocations 

on the number of required bikes in the system. 

Especially for tasks of tactical planning, anticipation of operational decisions is crucial for the 

viability of shared mobility systems. Costly relocation could be alleviated by appropriate fill 

levels that compensate expected variation of demand. To the best of the authors’ knowledge, 

only two integrated studies exist, anticipating relocation operations in tactical planning:  

 Correia and Antunes (2012) present multi-periodic MIP formulations to maximize the 

profit of a car sharing system considering the revenue of trips, costs of depot and ve-

hicle maintenance as well as costs of vehicle relocation. They determine the number 

and the location of stations as well as the number of vehicles at each station in each 

period of daily operation. They consider static relocation at the end of the day where 

vehicles are relocated between stations to reset the initial fill level. The validity of the 

MIP approach is investigated by means of a simulation model (Jorge et al. 2012). 

 Sayarshad et al. (2012) introduce a dynamic LP formulation to maximize profit in 

BSS. Relocation, maintenance, capital and holding costs of bikes as well as penalty 

costs for lost demand are deducted from revenue generated by trips. Unutilized bikes 

can be relocated in every period of daily operation. 

 Boyaci et al. (2015) present an optimization framework for the development of CSS. 

In a MIP formulation, the revenue of the CSS is maximized taking strategic, tactical 

and operational decisions into account. Due to the high number of relocation varia-

bles, an imaginary hub station is introduced. Relocation is only considered between 

bike stations and the hub station significantly reducing the number of relocation varia-

bles. 

In sum, recent approaches of tactical planning do not sufficiently reflect the interaction of fill 

levels and relocation operations as known from the field of SND. A general methodology that 
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benefits from usage and aggregation of detailed operational trip data for tactical planning is 

missing. Thus, in the following, we adapt existing optimization approaches of SND focusing 

on the adequate anticipation of relocation tours and present a new approach to aggregate 

operational data as input for SND. 

 

3 Service Network Design for Bike Sharing Systems  

SND requires the aggregation of operational data and the anticipation of operational deci-

sions. In this section, for data aggregation, an information model is proposed, which repre-

sents typical bike flows for different scenarios of bike demand by time-dependent OD matri-

ces (cf. Section 3.1). In combination with approaches from the field of urban transportation 

planning, trip purposes are identified, which allow for the generation of bike flows as input for 

SND. In Section 3.2, an optimization model is presented based on a MIP formulation, aiming 

at cost-efficient allocation of bikes to stations while ensuring a predefined service level for dif-

ferent scenarios of bike demand. We determine the total number of bikes in the system, opti-

mal target fill levels of stations, and expected relocation operations. Target fill levels ensure 

the provision of service depending on the time of the day for a given scenario, e.g., high bike 

demand on a working day in the main season. The anticipation of relocation operations 

yields the expected costs of relocation services to compensate insufficient fill levels.  

3.1  An Information Model for Generation of Typical Bike Flows 

BSS automatically record extensive amounts of trip data. Recorded trip data represent indi-

vidual observations of customer behavior and are therefore not suited as input for tactical 

planning. Thus, we propose a combined approach of urban transportation planning and intel-

ligent data analysis to derive an information model that represents trip purposes and typical 

bike flows (cf. Section 3.1.1). Based on this concept, we detail how this information model 

can be used to generate bike flows for SND (cf. Sections 3.1.2). 

3.1.1  Combining Transportation Planning and Intelligent Data Analysis 

To fully explore spatio-temporal characteristics of bike trips, we align the Urban Transporta-

tion Planning Systems (UTPS) process (Johnston 2004) with the field of intelligent data anal-

ysis (Berthold et al. 2010). The UTPS process is a common approach to model trips in urban 

areas. It comprises trip generation, trip distribution, mode choice and route selection, and 

provides an estimate of traffic flows for individual links of the considered transportation net-

work. Intelligent data analysis refers to the non-automatable extraction of knowledge from 

large datasets by means of data driven methods such as data mining (Berthold et al. 2010).  

Input data for the UTPS process is usually derived from costly surveys. Based on a small 

sample size, surveys provide a general picture of traveler behavior, including background in-
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formation on the purpose of a trip and the traveler’s attitude towards the usage of shared mo-

bility systems. Extending this idea with approaches from intelligent data analysis, we derive 

trip purposes from an extensive amount of trip data recorded by BSS. Trip data are available 

at low costs, since they have already been collected for tracking and billing purposes. The 

challenge is to derive the different trip purposes from the observed rental and return opera-

tions by intelligent data analysis. Once this is done, typical measures of mobility behavior 

and different demand scenarios can be generated for different demand scenarios.  

Although trip data are a great source for tactical planning, there are also limitations. First, ob-

served trip data may be biased, since lost demand is not recorded. As discussed in Sec-

tion 2, lost demand describes situations where a user would have rented a bike if the station 

had not been empty. However, this is not contained in recorded trip data. User polls or sur-

veys asking for the general mobility behavior may give some indication of “real” demand, but 

again, these approaches usually rely on small samples and may also be biased (Flyvbjerg et 

al. 2006). Second, relocation operations already carried out by the service operator affect the 

characteristics and the number of realized trips. Filtering the effects of past relocation opera-

tions is nearly impossible due to complex spatio-temporal interdependencies, though. For in-

stance, simply erasing trips that might have not been realized is too short-sighted, since they 

might have affected the fill levels of a chain of stations in the course of a day. Thus, for the 

scope of SND as described in this paper, we assume that tactical planning does not change 

customer behavior immediately, and that past relocation operations did not counteract the 

mobility demand of users. 

3.1.2  Generation of Typical Bike Flows 

Aggregation of trip data is required to model the spatio-temporal distribution of trips and un-

derlying trip purposes. We employ intelligent data analysis to segment bike stations accord-

ing to varying rental and return activities in the course of the day. With the temporal distribu-

tion at hand, the spatial distribution of trips between groups of stations with similar temporal 

activity are then determined. 

Construction of the information model. The temporal segmentation of bike stations aims 

to provide a compact representation of demand variation for SND. The idea is to represent 

typical demand without smoothing out information about demand variation. To this end, tem-

poral activity clusters are constructed by cluster analysis. A temporal activity cluster refers to 

a group of stations with similar rental and return activities in the course of the day. According 

to preliminary analyses of trip data, hourly aggregation seems suitable for cluster analysis. 

We implement the Expectation-Maximization algorithm (Dempster et al. 1977) to provide 

temporal activity clusters as detailed in Vogel et al. (2011). Results of cluster analysis are 
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evaluated by several internal validation measures as well as external validation by explora-

tory data analysis and interviews with operators of the BSS. As a result, each station is char-

acterized by its assigned temporal activity cluster, which yields the typical proportion of rent-

als and returns for each hour of the day.  

The spatial distribution of trips between stations is derived from the associated temporal ac-

tivity clusters as follows: 

 First, the inter-cluster distribution is constructed, which describes trip distribution pat-

terns between stations of individual activity clusters. They are specified by the propor-

tion of trips between individual temporal activity clusters for a given hour of the day. 

For instance, in the morning, the majority of trips is directed from “residential” to 

“working” clusters, whereas the opposite is true for afternoon hours.  

 Second, the intra-cluster distribution specifies how trips are distributed from a particu-

lar station to all stations contained in a cluster. We approximate this distribution 

based on the distance between stations and the resulting trip duration. The distribu-

tion of trip durations is empirically derived from recorded trip data.  

Formalization of the information model. With the temporal and spatial distributions at 

hand, the information model can be formalized as follows: 

 The BSS consists of a set bike stations 𝑁 = {𝑠1, … , 𝑠𝑛}. 

 The planning horizon comprises 𝑇 = {0, . . , 𝑡𝑚𝑎𝑥} periods, e.g., 24 hourly periods rep-

resenting a typical working day.  

 The total activity of a station 𝑠𝑖 is denoted by the absolute number of daily rentals 𝐵𝑖
− 

and daily returns 𝐵𝑖
+.  

 The set of temporal activity clusters is 𝐶 = {𝑐1, … , 𝑐𝑧}.  

The clustering 𝛾: 𝑁 → 𝐶 assigns each station 𝑠𝑖 ∈ 𝑁 to a temporal activity cluster 𝑐𝑗 ∈ 𝐶 defin-

ing the trip purposes at the station. Trip purposes are represented by the temporal rental ac-

tivity 𝛽𝑐𝑗,𝑡
− ∈ [0,1] ∀𝑡 ∈ 𝑇, 𝑐𝑗 ∈ 𝐶. The temporal activity expresses the relative hourly activity 

and thus summarizes to 1 over the course of the day for each cluster, i.e., ∑ 𝛽𝑐𝑗,𝑡
− =𝑡∈𝑇

1 ∀𝑐𝑗 ∈ 𝐶. The same holds for returns 𝛽𝑐𝑗,𝑡
+ ∈ [0,1]∀𝑡 ∈ 𝑇, 𝑐𝑗 ∈ 𝐶 with ∑ 𝛽𝑐𝑗,𝑡

+ = 1𝑡∈𝑇  ∀𝑐𝑗 ∈ 𝐶.  

The spatial trip distribution is given according to the inter-cluster distribution 𝜅: 𝐶 × 𝐶 × 𝑇 →

[0,1] and intra-cluster distribution 𝜆: 𝑁 × 𝑁 → [0,1]: 

 The inter-cluster distribution expresses the fraction of flows between clusters per time 

period. The fraction of inter-cluster flows summarizes to 1 from a particular cluster 𝑐𝑖 

in a specific time period 𝑡 to all clusters 𝑐𝑗 by means of ∑ 𝜅𝑐𝑖𝑐𝑗,𝑡 = 1𝑐𝑗∈𝐶  ∀𝑐𝑖 ∈ 𝐶, 𝑡 ∈ 𝑇. 

 The intra-cluster distribution expresses the fraction of flows from station 𝑠𝑖 to station 

𝑠𝑘 depending on the assigned cluster. The fraction of intra-cluster flows summarizes 
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to 1 based on flows 𝑠𝑖 to all stations 𝑠𝑘 of the particular cluster by means of 

∑ 𝜆𝑠𝑖𝑠𝑘
= 1𝑠𝑘∈𝐶𝑗

 ∀𝐶𝑗 ∈ 𝐶, 𝑠𝑖 ∈ 𝑁. 

With these notations in mind, we can describe the temporal and spatial distribution of bike 

rentals as follows: 

1) Temporal distribution: We determine the hourly activity at stations 𝐵𝑖,𝑡
−  by distributing 

the number of rentals at stations to the time periods provided by the temporal rental 

activity: 

𝐵𝑠𝑖,𝑡
− = 𝐵𝑠𝑖

− ⋅ 𝛽𝛾(𝑠𝑖),𝑡
−  ∀𝑠𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 

2) Spatial distribution:  

a) Inter-cluster distribution: We determine the bike flows 𝑓𝑠𝑖𝑐𝑗,𝑡
− : 𝑁 × 𝐶 × 𝑇 → ℝ+ from 

each station to each cluster by distributing the hourly rentals to the clusters: 

𝑓𝑠𝑖𝑐𝑗,𝑡
− = 𝐵𝑠𝑖,𝑡

− ⋅ 𝜅𝛾(𝑠𝑖)𝑐𝑗,𝑡  ∀𝑠𝑖 ∈ 𝑁 , 𝑐𝑗 ∈ 𝐶, 𝑡 ∈ 𝑇 

b) Intra-cluster distribution: We determine the bike flows 𝑓𝑠𝑖𝑠𝑗,𝑡
− : 𝑁 × 𝑁 × 𝑇 → ℝ+ from 

each station 𝑠𝑖 to each station 𝑠𝑗 by distributing the bike flows to the clusters 

among the stations belonging to the clusters: 

𝑓𝑠𝑖𝑠𝑗,𝑡
− = 𝑓𝑠𝑖𝛾(𝑠𝑗),𝑡

− ⋅ 𝜆𝑠𝑖𝑠𝑗
 ∀𝑠𝑖, 𝑠𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 

The distribution of bike returns can be determined analogously. In the end, rental and return 

flows are averaged. Output of the information model are time-dependent, real-valued bike 

flows 𝑓𝑠𝑖𝑠𝑗,𝑡, which represent the expected bike flow between origin station 𝑠𝑖 and destination 

station 𝑠𝑗 in hour 𝑡.  

Example generation of bike flows. Let us clarify the generation of bike flows based on a 

numerical example. In a specific hour of the day (𝑡 = 8), we consider rentals at station 𝑠𝑖 in 

cluster 𝛾(𝑠𝑖) = 𝑐𝑥 with a particular rental activity 𝛽𝑐𝑥,𝑡
−  and two destination clusters 𝑐𝑦 and 𝑐𝑧 

(cf. Fig. 2). Cluster 𝑐𝑦 contains the stations 𝑠𝑗 and 𝑠𝑘. Station 𝑠𝑗 is closer to station 𝑠𝑖 than 𝑠𝑘. 

For the sake of simplicity, the stations of 𝑐𝑧 are not considered. The expected number of 

daily rentals for station 𝑠𝑖 is 𝐵𝑠𝑖
− = 100. 
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Fig. 2 Flow generation according to the temporal activity and spatial distribution 

Combining the temporal and spatial distributions, the flows from station 𝑠𝑖 to 𝑠𝑗 and 𝑠𝑘 are 

computed as follows: 

1) Temporal distribution: The number of daily rentals is temporally distributed according 

to the rental activity cluster of this station, which denotes that 15% of the daily rentals 

account for the considered hour of the day. 

2) Spatial distribution: 

a) Inter-cluster distribution: Rentals are spatially distributed to activity clusters ac-

cording to the inter-cluster distribution for the given hour of the day. Here, 2/3 of 

rentals are distributed from cluster 𝑐𝑥 to cluster 𝑐𝑦 and 1/3 from cluster 𝑐𝑥 to clus-

ter 𝑐𝑧. Hence, 10 rentals are distributed to 𝑐𝑦 and 5 to 𝑐𝑧. 

b) Intra-cluster distribution: Rentals are further distributed within each activity cluster 

according to the intra-cluster distribution, contributing to a particular flow between 

a given OD pair. For this example, we assume that 70% of the trips have a short 

duration and 30% have a long duration. Thus, 70% of the rentals from station 𝑠𝑖 

are assigned to station 𝑠𝑗 and 30% to station 𝑠𝑘, because 𝑠𝑗 is closer to 𝑠𝑘. 

In sum, for the given hour of the day, the generated flow from station 𝑠𝑖 to 𝑠𝑗 is 7 bikes and 

from station 𝑠𝑖 to 𝑠𝑘 is 3 bikes. Since each station also serves as an attractor of trips and the 

number of daily rentals and returns may differ, the procedure is executed again to compute 

the number of bike rentals at each station. Let us assume that the generated flow to station 

𝑠𝑖 from 𝑠𝑗 is 4 bikes and to station 𝑠𝑖 from 𝑠𝑘 is 1 bike. In the end, the average of the genera-

tor and attractor bike flows is computed, providing time-dependent OD matrices. Here, the 

average flow for the 8th hour of the day from station 𝑠𝑖 to 𝑠𝑗 is 5.5 and from station 𝑠𝑖 to 𝑠𝑘 is 2 

bikes. 
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Generation of integer flows. The above presented method provides typical bike flows for 

each pair of stations in each time period in terms of real-valued metrics. However, realistic 

anticipation of relocation operations requires integer-valued bike flows, since it does not 

make sense to anticipate fractions of bike relocations. To this end, we transform the real-val-

ued bike flows into integer bike flows by scaling and transformation as follows:  

 In the scaling step, the real valued bike flows 𝑓𝑠𝑖𝑠𝑗,𝑡 are multiplied such that they equal 

the desired number of bike flows 𝑑 in relation to the total number of observed bike 

flows 𝑜 with 𝑓𝑠𝑖𝑠𝑗,𝑡
′ = 𝑚𝑢𝑙𝑡 ⋅ 𝑓𝑠𝑖𝑠𝑗,𝑡∀𝑠𝑖, 𝑠𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇, 𝑚𝑢𝑙𝑡 = 𝑑

𝑜⁄ . 

 In the transformation step, the flows are rounded according to a threshold 𝜏 for round-

ing up and down such that the total number of rounded flows amounts to the desired 

number of flows: ∑ ∑ ∑ 𝑅𝑜𝑢𝑛𝑑 (𝜏 , 𝑓𝑠𝑖𝑠𝑗,𝑡
′ ) = 𝑑 𝑡∈𝑇𝑠𝑗∈𝑁𝑠𝑖∈𝑁  with 𝑅𝑜𝑢𝑛𝑑 (𝜏, 𝑓𝑠𝑖𝑠𝑗,𝑡

′ ) :  𝐼𝑓 𝑓𝑠𝑖𝑠𝑗,𝑡
′  −

⌊𝑓𝑠𝑖𝑠𝑗,𝑡
′ ⌋ < 𝜏 𝑡ℎ𝑒𝑛 ⌊𝑓𝑠𝑖𝑠𝑗,𝑡

′ ⌋  𝑒𝑙𝑠𝑒 ⌈𝑓𝑠𝑖𝑠𝑗,𝑡
′ ⌉. 

A binary search is applied to determine 𝜏 yielding the desired number of bike flows. As a re-

sult, we have provided integer-valued, time-dependent OD matrices of bike flows as required 

for SND as detailed below. 

3.2  MIP Formulation for SND 

The following optimization model is based on the work of Crainic (2000) on SND in freight 

transportation. Generally, decisions on the tactical level aim at the optimal allocation and utili-

zation of resources to fulfill customer service and economic goals. Total costs comprise fixed 

costs for offering a regular transportation service between particular locations in a network 

and variable costs that arise for a particular set of transported goods. Transferring the idea of 

SND to the area of BSS, the service operator transports bikes in capacitated trucks from full 

to empty stations as to maintain a given service level. Fixed transportation costs arise for the 

implementation of relocation services, and variable costs arise for the handling of transported 

bikes.  

We propose a MIP formulation which determines optimal target fill levels at stations in the 

course of the day, ensuring the fulfillment of demand scenarios according to a predefined 

service level. The objective is to obtain fill levels at minimal expected costs of system opera-

tion. Resulting target fill levels and relocation services may serve as input for the optimization 

of relocation tours on the operational level. Relocation tours have to be adjusted depending 

on the actual demand realization of the particular day. 

Within the scope of tactical planning, anticipation of operational decisions is required to avoid 

suboptimal decisions on fill levels. Our optimization model is based on a relaxation of reloca-

tion operations. We refrain from a detailed modeling of routing as known from traditional 
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computationally challenging SND models (Crainic 2000) or inventory routing models (Camp-

bell et al. 1998), but we anticipate relocation operations by means of a dynamic transporta-

tion model (Bookbinder and Sethi 1980) yielding the required demand for relocation services. 

To this end, we use a binary variable allowing constraints on the frequency and the capacity 

of relocation services by consolidating relocations.  

A relocation service is described by pickup and return station, time period, and the number of 

relocated bikes. Relocation services represent the design decision for implementing a ser-

vice between two stations in each period at each day of system operation. They are modeled 

by binary variables 𝑅𝑆𝑠𝑖𝑠𝑗,𝑡. The number of relocated bikes for a particular service is modeled 

by continuous variables 𝑅𝑠𝑖𝑠𝑗,𝑡. Again, note that this is an approximation of relocation opera-

tions, which cannot replace detailed optimization from an operational perspective by means 

of vehicle routing procedures.  

Let 𝑁 be a set of rental stations and 𝑇 the set of time periods in a day. The total number of 

bikes in the system is given by 𝑏. The number of bikes can be adjusted if needed, e.g., in 

case of transition into another season. The typical demand for bikes and bike racks is de-

picted by bike flows 𝑓𝑠𝑖𝑠𝑗,𝑡 between stations 𝑠𝑖 and 𝑠𝑗 in time period 𝑡. The fulfillment of de-

mand at stations depends on the given design and configuration of system infrastructure, i.e., 

the number of bike racks 𝑏𝑟𝑠𝑖
 for returns (“size” of a station) and the number of allocated 

bikes at each station and period 𝐵𝑠𝑖,𝑡 for rentals. The objective is to minimize the total costs 

for relocation services while ensuring the availability of rental and return resources for time-

dependent “safety buffers” of bikes 𝑠𝑏𝑠𝑖,𝑡 and bike racks 𝑠𝑏𝑟𝑠𝑖,𝑡. Based on time-dependent OD 

matrices, the information model provides a scenario of bike flows 𝑓𝑠𝑖𝑠𝑗,𝑡 that serve as input for 

optimization. 

The SND model reads as follows: 

Sets 

 𝑁 = {𝑠1, . . . , 𝑠𝑛} : set of bike stations 

 𝑇 = {0, . . , 𝑡𝑚𝑎𝑥} : set of time periods, e.g., hours of the day. For resetting the number 

of allocated bikes at the end of the day, 𝑡𝑚𝑎𝑥 includes the first period of the next day. 

Decision variables 

 𝐵𝑠𝑖,𝑡 ∈ ℝ : number of bikes at station 𝑠𝑖 in time period 𝑡 

 𝑅𝑠𝑖𝑠𝑗,𝑡 ∈ ℝ : number of relocated bikes between stations 𝑠𝑖 and 𝑠𝑗 in time period 𝑡 

 𝑅𝑆𝑠𝑖𝑠𝑗,𝑡 ∈ {0,1} : defines whether there is a relocation service between stations 𝑠𝑖 and 

𝑠𝑗 in time period 𝑡 

Parameters 

 𝑏𝑟𝑠𝑖
 : number of bike racks at station 𝑠𝑖 (size of a station) 
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 𝑏 : total number of bikes in the system 

 𝑓𝑠𝑖𝑠𝑗,𝑡 : bike flow between stations 𝑠𝑖 and 𝑠𝑗 in time period 𝑡 

 𝑐ℎ𝑡 : average handling costs of one relocated bike in time period 𝑡 

 𝑐𝑡𝑠𝑖𝑠𝑗
 : average transportation costs of one relocated bike between stations 𝑠𝑖 and 𝑠𝑗 

 𝑙 : lot size, defining the capacity of the relocation truck 

 𝑠𝑏𝑠𝑖,𝑡 : bike safety buffer at station 𝑠𝑖 in time period 𝑡 

 𝑠𝑏𝑟𝑠𝑖,𝑡 : bike rack safety buffer at station 𝑠𝑖 in time period 𝑡 

With this notation, the optimization model reads: 

Minimize  ∑ ∑ ∑ (𝑐ℎ𝑡 ⋅ 𝑅𝑠𝑖𝑠𝑗,𝑡 + 𝑐𝑡𝑠𝑖𝑠𝑗
⋅ 𝑅𝑆𝑠𝑖𝑠𝑗,𝑡)  

𝑛

𝑠𝑗=1

𝑛

𝑠𝑖=1

𝑡𝑚𝑎𝑥

𝑡=0

   (1) 

subject to 

𝑙 ⋅ 𝑅𝑆𝑠𝑖𝑠𝑗,𝑡 ≥ 𝑅𝑠𝑖𝑠𝑗,𝑡  ∀s𝑖, s𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (2)  

 𝐵𝑠𝑖,𝑡+1 = 𝐵𝑠𝑖,𝑡 + ∑ (𝑓𝑠𝑗𝑠𝑖,𝑡 − 𝑓𝑠𝑖𝑠𝑗,𝑡 + 𝑅𝑠𝑗𝑠𝑖,𝑡 − 𝑅𝑠𝑖𝑠𝑗,𝑡)

𝑛

𝑠𝑗=1

 ∀s𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇\𝑡𝑚𝑎𝑥    (3) 

  𝐵𝑠𝑖,𝑡 − ∑ 𝑓𝑠𝑖𝑠𝑗,𝑡

𝑛

𝑠𝑗=1

+ ∑ 𝑓𝑠𝑗𝑠𝑖,𝑡

𝑛

𝑠𝑗=1

− ∑ 𝑅𝑠𝑖𝑠𝑗,𝑡

𝑛

𝑠𝑗=1

≥ sbsi,t ∀s𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇   (4) 

brsi
 − 𝐵𝑠𝑖,𝑡 − ∑ 𝑓𝑠𝑗𝑠𝑖,𝑡 + ∑ 𝑓𝑠𝑖𝑠𝑗,𝑡

𝑛

𝑠𝑗=1

𝑛

𝑠𝑗=1

− ∑ 𝑅𝑠𝑗𝑠𝑖,𝑡

𝑛

𝑠𝑗=1

≥ sbrsi,t ∀s𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇   (5) 

𝑅𝑠𝑖𝑠𝑗,0 = 0 ∀s𝑖, sj ∈ 𝑁   (6) 

𝐵𝑠𝑖,0 = 𝐵𝑠𝑖,𝑡𝑚𝑎𝑥
 ∀s𝑖 ∈ 𝑁   (7) 

∑ 𝐵𝑠𝑖,𝑡

𝑛

𝑠𝑖=1

= b ∀t ∈ T   (8) 

𝐵𝑠𝑖,𝑡 , 𝑅𝑠𝑖𝑠𝑗,𝑡 ≥ 0 ∀s𝑖, s𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇   (9) 

In the objective function (1), the costs for anticipated relocation services are minimized, com-

prising handling costs for each individual bike 𝑅𝑠𝑖𝑠𝑗,𝑡 and setup costs for running the particular 

relocation service 𝑅𝑆𝑠𝑖𝑠𝑗,𝑡 between two stations. Handling costs can vary depending on the 

time of the day, e.g., there are higher costs at night due to surcharges for the staff. Transpor-

tation costs are assumed to be constant. Depending on the given infrastructure configuration, 

potentially missing bikes or bike racks are compensated by relocation of bikes 𝑅𝑠𝑖𝑠𝑗,𝑡 between 

stations for each period of the day. Constraint (2) ensures that a relocation service does not 

exceed a predefined capacity given by the lot size 𝑙. Equation (3) ensures flow conservation, 

i.e., the number of bikes at a station in the next period is a result of the current number of 
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bikes plus returns from customers (𝑓) and relocation services (𝑅) minus customer rentals 

and relocation pickups. We assume that a particular relocation service is realized within one 

time period, but if relocation services take longer, (2) has to be adjusted by setting 𝑅𝑠𝑗𝑠𝑖,𝑡−1 

as well as the range of the index 𝑡. 

The availability of resources is ensured by constraints (4) and (5). On the one hand, it is 

guaranteed that a sufficient number of bikes (4) is present at every station and period, i.e., 

the number of bikes minus customer rentals plus costumer returns and relocation pickups is 

always larger than a given bike safety buffer 𝑠𝑏𝑠𝑖,𝑡. On the other hand, the number of free 

bike racks (bikes racks minus allocated bikes, customer and relocation returns plus customer 

rentals) is always larger than the bike rack safety buffer 𝑠𝑏𝑟𝑠𝑖,𝑡 (5). These two constraints en-

sure that rented bikes and used bike racks are not available for relocation in the particular 

period, and all demand is satisfied. Relocation services are not allowed in the first period (6), 

and the initial fill level is restored at the end of the day (7). Equation (8) ensures that all exist-

ing bikes need to be allocated. Decision variables must be non-negative (9). The above con-

straints enable particular safety buffers for bike and bike racks depending on the time of day. 

For instance, in periods with a high rental activity and a low return activity at a station, the 

bike safety buffer can be set to a high value while the safety buffer can be kept low for bike 

racks. Reasonable values for safety buffers can be determined by analyzing the demand var-

iation based on observed trip data.  

Modeling the availability of resources as shown in constraints (4) and (5) is a rather optimistic 

approach, since customer rentals and returns are interchanged simultaneously. An alterna-

tive approach would be to handle bikes and bike racks as separate resources, but this would 

result in a too pessimistic modeling since recently returned bikes could not be used by the 

next customer in the same time period. 

Although we relax the construction of relocation tours by applying a dynamic transportation 

model, the introduced dynamic MIP formulation is still computationally hard. The complexity 

arises due to the large number of binary variables for relocation services (stations × stations 

× time periods). We note that the MIP model will be computationally intractable for large in-

stances, and that heuristics may be required here. 

 

4  Decision Support for Service Network Design of “Citybike Wien” 

In the following study, the presented approach is applied to a real BSS in order to demon-

strate the usefulness of SND and the interplay of information and optimization models. The 

information model is parameterized based on extensive trip data recorded by Vienna’s 

“Citybike Wien”. Two demand scenarios are generated (Section 4.1). For each scenario, re-

sults of SND are discussed along spatio-temporal dimensions (Section 4.2). 
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4.1  Generation of Typical Bike Flows for Service Network Design 

Citybike Wien provided trip data for the years 2008 and 2009. The operational dataset com-

prises approx. 750’000 data records for a BSS of 59 stations with a total of 1253 bike racks 

and 627 bikes. In order to employ a tactical planning perspective and to reflect the typical us-

age of the system, we restrict our analysis to summer trips only (April to October), accounting 

for 72% of all trips. In the summer season, 1569 trips occur per day or 2.5 trips per bike and 

day on average, respectively. The data analysis tool RAPIDMINER (http://rapid-i.com/) is 

used for generation, documentation and implementation of the information model. The trans-

formation and the scaling of flows is implemented in JAVA.  

4.1.1  Temporal Distribution of Trips 

For temporal modeling, we need to determine an appropriate timescale in order to aggregate 

operational trip data for SND. Based on recorded rental and return times, the durations of 

trips are calculated and then aggregated in one minute buckets. Trip durations follow a Pois-

son-like distribution (Fig. 3a). The average trip lasts approx. 27 minutes with a median of 16 

minutes. About 92% of trips are shorter than 60 minutes. Almost 70% of the trips end within 

the same hour, i.e., a trip that starts in a particular hour of the day will most likely end in the 

same hour. For this set of operational data, hourly aggregation seems sufficient to reflect 

temporal variation of bike rentals. The distribution of trip durations combined with given dis-

tances between stations determine parameters for the intra-cluster distribution 𝜆𝑠𝑖𝑠𝑗
.  

 

Fig. 3 Distribution of trip durations (a) and rental patterns on working and weekend 

days (b) 

The hourly aggregation of trips results in 24*7 values representing the average rental activity 

in every hour of each day. Working days and weekend days show distinct rental patterns 

(Fig. 3b). Working days have three peaks: (1) a night peak probably resulting from the cessa-

tion of subway service, (2) morning commutes, and (3) the overall daily peak in the afternoon 

hours due to overlapping commuter and leisure usage. Weekend days clearly indicate a lei-

sure-dominated activity by a distinct night peak and missing morning peak. In the following, 
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we focus on the analysis of working days only, since relocation is usually not carried out on 

weekends. To this end, we set 𝑡𝑚𝑎𝑥 = 24 (hourly) periods. 

In order to determine temporal activity cluster of stations, the hourly rental and return activity 

for each station is calculated, i.e. the fraction of daily rentals and returns, respectively. This 

leads to a data set of 59 stations with 48 attributes representing the temporal activity. For the 

above data set, cluster analysis groups the 59 stations to five activity clusters. Cluster cen-

troids represent the main trip purposes at stations that were assigned to the particular clus-

ter.  

 

Fig. 4 Rental and return activity clusters (a) and geographical distribution of clusters (b) 

Fig. 4 shows the obtained rental activities 𝛽𝐶,𝑡
−  and return activities 𝛽𝐶,𝑡

+  as well as the geo-

graphical distribution of clusters in the city of Vienna: 

 Stations within the working cluster are characterized by commuter trips showing a return 

activity peak in the morning and a rental activity peak in the late afternoon. These sta-

tions are located in the city center, having a high number of working places and points of 

interest as well as a low proportion of residents.  

 The residential cluster shows the opposite activity of commuter trips with dominating 

rental activity in the morning and return activity in the afternoon. These stations are lo-

cated at the periphery, which has more residential buildings. 

 The leisure cluster shows activities similar to the residential cluster, but stands out due to 

different nighttime activities likely resulting from leisure trips. These activities are probably 

caused by popular nightlife districts. 
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 The tourist cluster is distinguished by a significant proportion of daytime rental and return 

activity, but almost no nighttime activity. Stations are close to popular tourist attractions in 

the west (castle Schoenbrunn), east (Prater carnival) and the city center (St. Stephan’s 

Cathedral). Note that Citybike Wien’s “tourist card” is also handed out next to the city 

center station, which may explain the distinguished activity of this station. 

 The mixed cluster represents stations that cannot be distinguished according to their 

main trip purposes and thus reflects a more average rental and return activity on working 

days. This observation is also underlined by the location of these stations, which is often 

between stations of other clusters.  

4.1.2  Spatial Distribution of Trips 

Based on the temporal activity clusters, the spatial distribution of trips between temporal ac-

tivity clusters is computed considering the different trip purposes (working, residential, lei-

sure, tourist, mixed). We exemplify the results for the time-dependent inter-cluster distribution 

𝜅𝐶𝐶,𝑡 for stations of the residential cluster (cf. Fig. 5). 

 

Fig. 5 Inter-cluster distribution between the residential cluster and other clusters 

In the morning hours, more than 40% of trips starting at the residential cluster end at the 

working cluster reflecting commuter trips. Note that the peak in hour 5 with of proportion of 

70% commuter trips might be overrepresented, since this is the hour with the lowest overall 

usage. In the afternoon hours, the proportion of trips from the residential cluster to working 

cluster declines. In contrast, the proportion of trips to the residential and leisure cluster in-

creases. Trips to the leisure cluster dominate during night time. In sum, the inter-cluster dis-

tribution follows the general mobility behavior in Citybike Wien. 

4.1.3 Generation and Validation of Bike Flows 

Finally, typical bike flows are generated providing 24 time-dependent OD matrices for all 59 

stations. The OD matrices contain a total of 1569 daily trips performed with 627 bikes. The 

information model distributes these trips to 59 × 59 × 24 = 83544 OD pairs. By scaling and 
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transformation, different demand scenarios can be generated. We use the original data set 

(1569 trips, 2.5 trips per bike) as the basic demand scenario and create a second scenario, 

the high demand scenario, with twice the demand (3138 trips, 5 trips per bike). 

An extract from the resulting OD matrices of the basic demand scenario for a particular time 

period is shown below. Rows present origin stations, columns destination stations and matrix 

entries the bike flows. The left matrix shows real-valued bike flows as computed by the infor-

mation model. In order to transform the real-valued bike flows into integer bike flows, a 

threshold of 𝜏 = 0.1488 is determined for rounding such that the total number of rounded 

flows amounts to 1569 trips. Applying this threshold yields the integer bike flows shown in the 

right matrix. For instance, a value of 0.1488 > 𝜏 translates into 1, and a value of 0.1386 < 𝜏 

translates into 0. 

[

0.1765 0.0967 0.2372 …
0.1386 0.9095 0.1900 …
0.3463 0.1550 0.4201 …

… … … …

] => [

1 0 1 …
0 1 1 …
1 1 1 …
… … … …

] 

In order to generate typical bike flows for the high demand scenario, real-valued bike flows 

are doubled and a new threshold 𝜏 = 0.2104 is determined such that the total number of 

rounded flows amounts to 3138 trips. Note that not each integer bike flow of the basic de-

mand scenario is doubled in the end, leading to the new set of integer bike flows as shown 

below: 

[

0.3530 0.1934 0.4744 …
0.2772 1.8190 0.3800 …
0.6920 0.3100 0.8402 …

… … … …

] => [

1 0 1 …
0 2 1 …
1 1 1 …
… … … …

] 

By applying this approach, we assume that it is more important to consider the variation of 

more significant flows in SND, while variation of inferior flows must be handled by operational 

planning. In the end, OD pairs with a flow of a very small expected number of bikes are con-

sidered as not relevant for SND, while significant bike flows are amplified. 
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Fig. 6 Comparison of the general flow structure of average recorded flows and gen-

erated integer bike flows  

For validation, we explore the general flow structure as well as temporal and spatial charac-

teristics of bike flows. To this end, we compare average bike flows as recorded by the BSS 

with generated integer bike flows as described above in contour diagrams (Fig. 6) for after-

noon bike rentals. For all OD pairs, the diagrams show the intensity of the flows; the larger 

the flow, the darker the color. The average recorded bike flows stand out due to numerous 

OD pairs with a small value in the range of [0; 0.65]. Thus, simply averaging bike flows is not 

adequate for tactical planning. Due to the small sample size, the influence of non-typical be-

havior in trips at individual stations, e.g., due to sudden rain, events and full or empty sta-

tions, could superimpose the main trip purposes. Based on integer flow generation, the more 

significant bike flows translate into integer flows {0,1} that are considered by SND as high-

lighted by the right diagram. 

Focusing on temporal characteristics, Fig. 7 compares the rental activity of average recorded 

flows and generated integer bike flows aggregated by the hour of the day. In general, the 

shape of the curves are quite similar, both showing the night, morning and afternoon peaks. 

The differences in rental activity range between -2 and +5 percentage points. The rental ac-

tivity in low usage hours is mitigated, whereas the rental activity in high usage hours is ampli-

fied by the information model. These characteristics follow our intuition of data aggregation 

for SND. We consider the differences between average recorded and generated integer bike 

flows to be within reasonable limits, carving out the typical temporal characteristics of 

Citybike Wien. 
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Fig. 7 Comparison of average and generated integer bike flows per hour of the day 

Investigating spatial characteristics of average recorded and generated integer bike flows for 

each station, Fig. 8 plots the total daily number of average rentals against generated integer 

rentals. The different colors denote the activity cluster the station was assigned to. For in-

stance, the most upper right working cluster station has 76 average rentals and 108 integer 

rentals. Again, the number of rentals at stations with a high number of average recorded 

rentals is amplified by our information model (see cluster working stations, for example). In 

contrast, rentals at stations with a low number of average recorded rentals are mitigated (see 

mixed cluster stations, for example). As a result, for generated integer values, 40% of the 

stations account for 80% of rentals. For average values of recorded flows, 64% of the sta-

tions account for 80% of rentals. Thus, stations that are frequently used on average play a 

significant role in tactical planning, whereas rarely used stations are disregarded by our infor-

mation model. Consequently, stations with typically high usage rate face higher relocation 

demand leading to presumed higher relocation demand. Similar findings are observed for re-

turns.  
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Fig. 8 Average number of rentals compared to generated integer number of rentals 

per station  

In sum, the information model carves out typical flows while retaining the spatio-temporal 

characteristics of Citybike Wien. It can be concluded that the information model reasonably 

generalizes the user behavior for tactical planning purposes. The generated integer bike 

flows provide an adequate input for SND. 

4.2  Service Network Design for Different Demand Scenarios 

We turn our attention to the application of SND for different scenarios of demand for Citybike 

Wien. We first describe the experimental setup with particular focus on the parameters and 

the computational solution environment (Sect. 4.2.1). Based on these parameters, we con-

duct SND for the basic demand scenario and compare the results to SND for the high de-

mand scenario. The key figures of the solutions are compared in Sect. 4.2.2. The character-

istics of fill levels and relocation services are discussed in Sect. 4.2.3 and Sect. 4.2.4, high-

lighting the extent that stations need relocation services to support operational planning. 

4.2.1 Experimental Setup 

The experimental setup for SND is as follows: 

 Two demand scenarios: basic demand (1569 trips) and high demand (3135 trips) 

 The network of Citybike Wien comprises 𝑛 = 59 bike stations with a total number of 

1253 bike racks and a total of 𝑏 = 627 bikes (~50% average fill level).  

 Time is discretized in terms of 𝑡𝑚𝑎𝑥 = 24 (hourly) time periods. 

 We assume that relocation services take one hour on average (approx. 15-20 

minutes for loading and unloading plus travel times between stations).  
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 According to the system operator, handling costs depend on the time of the day. Day-

time handling costs are set to 𝑐ℎ𝑑𝑎𝑦 = 4 Euro (in effect for time periods 8 to 17), while 

night time handling costs are more expensive (𝑐ℎ𝑛𝑖𝑔ℎ𝑡 = 7 Euro).  

 Transportation costs are assumed to be independent of the time of day and amount 

to 𝑐𝑡𝑖𝑗 = 0.5 Euro per kilometer.  

 The lot size of relocation services is 𝑙 = 20.  

 Bike and bike rack safety buffers are set to zero for each station and time period, en-

suring that fill levels are non-negative and do not exceed station capacities.  

The MIP model described in Section 3 is implemented in IBM ILOG OPL and solved with 

CPLEX 12.5 on an INTEL Core i5 processor at 3.2 GHz and 8 GB RAM running Windows 7 

64 Bit. Both demand scenarios are given 30 minutes run time. CPLEX returns solutions with 

a gap of 1-2%. Although these gaps are very small, the optimal solution could still not be ob-

tained after an increased run time of 24 hours. Note again that this instance, compared to 

other BSS, is a small instance with a total of 59 × 59 × 24 = 83544 binary relocation service 

variables. For bigger instances, a heuristic approach will be needed due to the sheer number 

of binary variables. 

4.2.2 Key Figures of the Service Network 

First, we discuss key figures resulting from SND for the different demand scenarios. In order 

to demonstrate the benefit of optimized fill levels, we compare the costs of relocation re-

quired for the “optimal” fill levels to manually preset “naïve” fill levels. As often suggested by 

practitioners, we set the “naïve” fill levels for all stations to 50% in the hour of the lowest de-

mand (hour 5). Table 1 summarizes these figures in terms of the number of relocated bikes, 

the number of relocation services, average number of relocated bikes per service as well as 

total and relative costs of relocation. The relative costs of relocation can be interpreted as the 

“usage fee” per trip required to compensate relocation costs. 

Table 1 Key figures of relocation services 

Demand 
scenario 

Relocated  
bikes 

Relocation  
services 

Relocated bikes 
per service 

Total relocation 
costs 

Relative relocation 
costs  

basic (naïve) 130 42 3.09 584 0.37 

basic (optimal) 119 32 3.71 496 0.32 

high (naïve) 282 70 4.02 1345 0.42 

high (optimal) 215 46 4.67 932 0.30 

For the basic demand scenario, “naïve” fill levels result in 130 relocated bikes with 42 reloca-

tion services. Each relocation service carries 3.09 bikes on average. Total costs for reloca-

tion services amount to 584 Euros. A “usage fee” of 0.37 Euros per trip would thus be re-

quired to compensate relocation costs. In contrast to the “naïve” fill levels, “optimal” fill levels 

result in significantly lower relocation costs (17%), namely 496 Euros (119 relocated bikes 

with 32 relocation services). For the high demand scenario, the benefit of “optimal” fill levels 
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becomes even more significant. “Naïve” fill levels result in 1345 Euros relocation cost (282 

relocated bikes with 70 relocation services) whereas a saving of 44% is achieved with “opti-

mal” fill levels. Comparing the results of “optimal” fill levels for the basic and high demand 

scenario shows that the number of relocated bikes increases by factor 1.8, the number of re-

quired relocation services by a factor of about 1.5 and the total relocation costs by a factor of 

1.87. It is of note that doubling the demand does not result in doubled relocation services and 

costs. With doubled demand, the relative costs of relocation decrease slightly. Due to consol-

idation of relocation services, service capacities are utilized better, and only few additional 

relocation services are required. Furthermore, adapted fill levels compensate increased de-

mand to a certain extent.  

4.2.3 Characteristics of Fill Levels 

The aim of optimized fill levels is to ensure efficient provision of service at all times of the 

day. We present and evaluate the optimized fill levels for the two demand scenarios and the 

morning and afternoon peak hours. They are depicted in Fig. 7 by means of box plots of fill 

levels per cluster and hour of day. 

The basic demand scenario reflects the demand for a typical working day in the summer sea-

son. In the morning peak hour, stations belonging to the working cluster require a low fill level 

of about 18% on average, and stations of the other clusters require a high fill level of about 

60% and 70% on average. Thus, empty bike racks are needed at working cluster stations, 

whereas bikes are required at other cluster stations. In the afternoon peak hour, stations of 

the working cluster require higher fill levels than stations of the residential clusters. Fill levels 

at working cluster stations are almost 50% on average and almost 40% at residential cluster 

stations. Striking is the high variance of fill levels of the working and residential cluster com-

pared to the morning peak. Fill levels at other clusters remain about the same. Note that the 

variance of fill levels among stations is high in general. For the working, residential and lei-

sure cluster stations, capacity is sufficient to reserve bikes or bike racks for the demand of 

the upcoming time periods. Regarding mixed cluster stations, the high variance occurs due 

to diverse trip purposes. Tourist stations seem to serve as “buffer” stations being (almost) full 

or (almost) empty because the demand in general is rather low. In sum, fill levels reflect the 

rental and return activity of the clusters. 

For the high demand scenario, average fill levels are more distinct and the variance within 

individual clusters is lower. Generally, the system seems to be more used to capacity which 

is reflected by the more distinct fill levels with smaller variance. In the morning peak hour, the 

higher demand induces more returns at working cluster stations and more rentals at residen-

tial cluster stations. Thus, more bike rack capacity is required at working cluster stations and 

more bike capacity is needed at residential cluster stations. As a result, fill levels at working 
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cluster stations are 8% on average and 95% at residential cluster stations. In the afternoon 

peak hour, fill levels at stations of the working and residential clusters are more distinct than 

in the basic demand scenario for the same reason. Missing bike capacity is compensated by 

means of the leisure cluster stations, which show lower fill levels in the morning and after-

noon. 

 

  

  Fig. 7 Boxplots of fill levels per cluster for peak hours in two demand scenarios 

In sum, the demand increase especially affects working and residential cluster stations. Sta-

tions belonging to the leisure cluster serve as compensation stations for the increased de-

mand for rentals and returns at working and residential cluster stations. Hence, these sta-

tions play a vital role in tactical planning. 

4.2.4 Characteristics of Relocation Services 

Characteristics of relocation services determined by SND can aid the operator in preparing 

and implementing relocation services. We present spatio-temporal characteristics of reloca-

tion services resulting from SND for the basic and high demand scenarios. 

Fig. 8 shows the total number of bikes that are expected to be picked up and returned by re-

location services at each station, arranged by cluster assignment for the basic and high de-

mand scenarios. We can clearly identify stations that require relocation pickups, returns or 

working residential leisure mixed tourist

0%

20%

40%

60%

80%

100%

fi
ll

 l
e
v

e
l

basic demand, morning peak

working residential leisure mixed tourist

0%

20%

40%

60%

80%

100%

fi
ll

 l
e
v

e
l

basic demand, afternoon peak

working residential leisure mixed tourist

0%

20%

40%

60%

80%

100%

fi
ll
 l
e
v

e
l

high demand, morning peak

working residential leisure mixed tourist

0%

20%

40%

60%

80%

100%

fi
ll
 l

e
v
e

l

high demand, afternoon peak



28 

 

stations that can compensate demand without relocation. Regarding the basic demand sce-

nario, relocation demand ranges between 20 relocation pickups and 14 relocation returns, 

i.e., the first station in the working cluster requires 14 bikes to be returned by relocation ser-

vices, whereas the last station in the residential cluster needs 20 bikes to be picked up by re-

location services. Stations that require relocation returns mainly belong to the working clus-

ter, and stations requiring relocation pickups belong to the residential cluster. Stations of the 

leisure and mixed clusters need both relocation pickups and relocation returns, but they are 

also often able to (almost) balance pickups and returns properly without relocation services.  

 

Fig. 8 Total number of returned (positive) and picked up (negative) bikes by reloca-

tion for the basic demand scenario (left) and high demand scenario (right) 

Regarding the high demand scenario, the presented order of stations is the same as in the 

low demand scenario. Higher demand causes increasing relocation demand, ranging from 32 

relocation pickups to 21 relocation returns. Comparison of the two demand scenarios shows 

that the tendency of a station requiring either relocation returns, relocation pickups or no relo-

cation remains for 66% of the stations when demand increases. At 7% of the stations, the re-

quired relocation efforts decrease. For 22% of the stations, the type of relocation service 

swaps from pickups to returns or vice versa. 

Findings from SND show that stations either require relocation pickups or returns in general. 

This finding may support the planning of relocation operations, since the direction of reloca-

tion is known. Furthermore, SND gives indications on the priority of relocation operations at 

stations. Stations requiring a high number of relocation pickups or returns may be visited 

once a day. Stations with a medium number of relocation pickups or returns need relocation 

only on certain days of the week. The remaining stations may be visited occasionally. Im-

portant for operational and strategic planning is that there are three stations in the high de-

mand scenario that require both relocation pickups and relocation returns. This implies insuf-

ficient capacity, because these stations cannot compensate demand variation throughout the 

day. Implications for the operational level are that these stations require relocation services 

more than once a day. Implications for the strategic level are that the size of the station 

should be extended, if possible.  



29 

 

Overall, the computational experiments show that SND helps determining reasonable fill lev-

els and relocation services. The benefit of this tactical approach is that determined fill levels 

may serve as target fill levels for operational planning. Furthermore, characteristics of reloca-

tion services can aid the operator in the planning of relocation tours. SND provides infor-

mation on the expected relocation demand at stations and shows which stations might play a 

crucial role in operations. Furthermore, information on the expected flows of relocations can 

help reducing the complexity of operational planning tasks such as routing of service vehi-

cles. 

5 Conclusions and future research 

This paper lays the foundation of SND for BSS and related shared mobility systems. We 

have proposed an integrated approach of intelligent data analysis and mathematical optimi-

zation for SND in BSS. An information model has been presented allowing for the generation 

of spatio-temporal bike demand in terms of time-dependent OD matrices. Derived OD matri-

ces have served as input for a MIP based SND model. The optimization model determines 

the optimal fill level at stations minimizing the expected costs of relocation services while en-

suring a predefined service level. The computational study has shown that the approach 

yields reasonable fill levels at stations and identifies the extent that stations need relocation. 

The presented information model represents dynamic system behavior as required by SND. 

Note that it could also be used to depict typical bike flows for strategic planning and individ-

ual trips for operational planning if parameterized accordingly. For strategic planning, spatio-

temporal distributions of not yet implemented stations could be forecasted from existing sta-

tions, e.g., one could assume that a new station in a residential area will likely show similar 

main trip purposes as an existing station in a similar area. For operational planning, the ex-

pected values would have to be incorporated into probability functions such as the Poisson 

distribution. In combination with the distribution of trip durations, this would allow for genera-

tion of individual trips between stations. Finally, the information model is also applicable to 

other shared mobility systems as long as a sufficient amount of operational data is available. 

Future research could investigate improved ways of modeling relocation services for BSS 

and the adaption of the SND model to related shared mobility systems. We want to encour-

age future research regarding SND models better anticipating operational relocation deci-

sions, for example, by modeling routing of relocation vehicles. Furthermore, a more robust 

service network design would be desirable. Generated demand scenarios reflect differences 

in demand variation. These scenarios could be applied to a stochastic optimization model. 

Regarding the evaluation of tactical decisions, it might be interesting to study the influence of 

fill levels on resulting relocation tours. Another interesting future path is the determination of 

optimal safety buffers for each station and period to improve target fill levels. Whilst the 
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above information model is generally applicable to shared mobility systems, the SND model 

has to be modified for other means of transportation, system designs and business models. 
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